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completion-based infeasibility provers: Moca, Mædmax (ConCon), Toma

Moca (developed by Ōi) solves 48 COPS problems including

#{809, 853, 857, 882, 905, 908, 930}

which are only solved by Moca

table of contents:
1 unraveling for infeasibility (using #908)
2 ground completeness/joinability for infeasibility (using #853)
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Unraveling for Infeasibility
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Definition (infeasibility problem)
specification of infeasibility problem is as follows

input: conditional (oriented) TRS R and queries s1 →∗ t1, . . . , sn →∗ tn

output: whether there is a substitution σ s.t. s1σ →∗
R t1σ, . . . , snσ →∗

R tnσ

problem is called infeasible if there is no such σ

framework of completion-based infeasibility provers:
1 turn query into ground one (lift query into conditional rule)
2 unravel CTRS into pure equations
3 solve word problem by completion (e.g., Knuth–Bendix completion)
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Step 1: Turn Query into Ground One

Proposition
for fresh symbols T and F, the following statements are equivalent

s1 →∗ t1, . . . , sn →∗ tn is infeasibile under CTRS R
T →∗ F is infeasible under R ∪ {T → F ⇐= s1 →∗ t1, . . . , sn →∗ tn}

remarks
grounding query is essential for final step (refutation by completion)
one can virtually apply rule-inlining by Sternagels (CADE 2017) to query
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Example: Apply Step 1 to COPS#908 (ARI#763)
query x < min(y) →∗ true, x < min(y) →∗ false under CTRS R

x < 0 → false
0 < s(y) → true

s(x) < s(y) → x < y

min(cons(x, nil)) → x

min(cons(x, xs)) → x ⇐= x < min(xs) →∗ true
min(cons(x, xs)) → min(xs) ⇐= x < min(xs) →∗ false

is transformed into new query T →∗ F under CTRS

R ∪ {T → F ⇐= x < min(y) →∗ true, x < min(y) →∗ false}
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Step 2: Unraveling

Definition (Marchiori 2005; Claessen and Smallbone 2018; Ōi 2020)
unraveling U maps each rule ℓ → r ⇐= s1 →∗ t1, . . . , sn →∗ tn into either

{ℓ → r}, or

{ℓ → U(s1, . . . , sn, x⃗), U(t1, . . . , tn, x⃗) → r}
where U is function symbol and x⃗ are variables

Proposition

→R ⊆ →+
U(R) for all CTRSs R and unravelings U, where U(R) =

⋃
ρ∈R

U(ρ)

we may choose same U for different rules, or ignore conditions
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Example: Unraveling COPS#908 (Failure)

part of conditional rules:

min(cons(x, xs)) → x ⇐= x < min(xs) →∗ true
min(cons(x, xs)) → min(xs) ⇐= x < min(xs) →∗ false

use U1 and [x, xs] for the first, and U2 and [x, xs] for the second

min(cons(x, xs)) → U1(x < min(xs), x, xs) U1(true, x, xs) → x

min(cons(x, xs)) → U2(x < min(xs), x, xs) U2(false, x, xs) → min(xs)

but Moca fails in the next step (or fails to find complete presentation)
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Example: Unraveling COPS#908 (Ōi’s Refinement)

part of conditional rules:

min(cons(x, xs)) → x ⇐= x < min(xs) →∗ true
min(cons(x, xs)) → min(xs) ⇐= x < min(xs) →∗ false

use U1 and [x, xs] for the first, and same U1 and [x, xs] for the second

min(cons(x, xs)) → U1(x < min(xs), x, xs) U1(true, x, xs) → x

min(cons(x, xs)) → U1(x < min(xs), x, xs) U1(false, x, xs) → min(xs)

then Moca succeeds on transformed problem afterwards
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Step 3: Disproof by Completion

at this point we have ground query s →∗ t and TRS R

Proposition
s →∗ t is infeasible if there is confluent S with R ⊆ ↔∗

S and s, t not S-joinable

Proof.
sσ = s →∗

R t = tσ =⇒ s ↔∗
S t =⇒ s and t are joinable  

remarks
equivalence ↔∗

R = ↔∗
S is unnecessary (Moca further exploits this fact)

we can use any completion (Knuth–Bendix/maximal/with termination tool)
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Demo and Summary of Part 1

demo!

framework of completion-based infeasibility provers:
1 turn query into ground one (lift query into conditional rule)
2 unravel CTRS into pure equations
3 solve word problem by completion (e.g., Knuth–Bendix completion)
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Ground-Completeness/Joinability
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Solving Word Problem by Ordered Completion

observation: goal is ground in the last step (for solving word problem)

let E be equations and > reduction order

Definition (ordered rewrite system or OTRS)

E> = {ℓσ → rσ | ℓ ≈ r ∈ E ∪ E−1, ℓσ > rσ}

let s →∗ t be ground query and R TRS (maybe violating variable condition)

Proposition
s →∗ t is infeasible if E> is ground-confluent, R ⊆ ↔∗

E>
and s, t are not joinable

remark: extended critical pair lemma is nice characterization of ground-confluence

Certification of Completion-Based Infeasibility Proofs 13/17



Solving Word Problem by Ordered Completion

observation: goal is ground in the last step (for solving word problem)

let E be equations and > reduction order

Definition (ordered rewrite system or OTRS)

E> = {ℓσ → rσ | ℓ ≈ r ∈ E ∪ E−1, ℓσ > rσ}

let s →∗ t be ground query and R TRS (maybe violating variable condition)

Proposition
s →∗ t is infeasible if E> is ground-confluent, R ⊆ ↔∗

E>
and s, t are not joinable

remark: extended critical pair lemma is nice characterization of ground-confluence

Certification of Completion-Based Infeasibility Proofs 13/17



Solving Word Problem by Ordered Completion

observation: goal is ground in the last step (for solving word problem)

let E be equations and > reduction order

Definition (ordered rewrite system or OTRS)

E> = {ℓσ → rσ | ℓ ≈ r ∈ E ∪ E−1, ℓσ > rσ}

let s →∗ t be ground query and R TRS (maybe violating variable condition)

Proposition
s →∗ t is infeasible if E> is ground-confluent, R ⊆ ↔∗

E>
and s, t are not joinable

remark: extended critical pair lemma is nice characterization of ground-confluence

Certification of Completion-Based Infeasibility Proofs 13/17



Solving Word Problem by Ordered Completion

observation: goal is ground in the last step (for solving word problem)

let E be equations and > reduction order

Definition (ordered rewrite system or OTRS)

E> = {ℓσ → rσ | ℓ ≈ r ∈ E ∪ E−1, ℓσ > rσ}

let s →∗ t be ground query and R TRS (maybe violating variable condition)

Proposition
s →∗ t is infeasible if E> is ground-confluent, R ⊆ ↔∗

E>
and s, t are not joinable

remark: extended critical pair lemma is nice characterization of ground-confluence

Certification of Completion-Based Infeasibility Proofs 13/17



Moca completely ignores condition parts of COPS#853 (ARI#709)

x < 0 → false
0 < s(y) → true

s(x) < s(y) → x < y

app(nil, ys) → ys

app(x : xs, ys) → x : app(xs, ys)
split(x, nil) → nil

split(x, y : ys) → pair(xs, y : zs) ⇐= split(x, ys) →∗ pair(xs, zs), . . .

split(x, y : ys) → pair(y : xs, zs) ⇐= split(x, ys) →∗ pair(xs, zs), . . .

qs(nil) → nil
qs(x : xs) → app(qs(ys), x : qs(zs)) ⇐= split(x, xs) →∗ pair(ys, zs)

but successfully finds ground-confluent OTRS E> (!?)
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E>: OTRS with > ground-total

Theorem (Martin and Nipkow 1990)
E> is ground-confluent iff all extended critical pairs are ground-joinable

remark: ground-confluence of TRS is different from that of OTRS

Martin and Nipkow’s testing for checking ground-joinability of s ≈ t w.r.t E>

1 enumerate all possible orderings π of variables in s, t

2 extend ordering > to >π (closure operation)
3 test ground-joinability of s ≈ t w.r.t E>π

remark
closure operation need be defined for each ordering (e.g. KBO/LPO closure)
required properties of closure operation are described in axiomatic way
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34 of 48 proofs by Moca are already certified by CeTA, including

COPS#{809, 853, 857, 882, 905, 908, 930}

done
formalized unraveling for infeasibility (Réne)
(ground-)completion (Christian Sternagel and Sarah Winkler)

(extended) critical pair lemma
Martin and Nipkow’s method for ground-joinability
KBO closure for Martin and Nipkow’s method

putting everything together (certification interface, certificate generation)

todo: LPO closure for COPS#{809, 853, 857, 930} (in March)
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Comments by Audience

NN: Ōi’s refinement was already observed by Gmeiner, Nishida and Gramlich
(WST 2013)
NN: ConCon’s tree automata approach also completely ignores conditions
NH: simulating TCAP by completion-based approach?
RT: partial unraveling (leaving some conditions) could be useful?
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