	Logically Constrained Term Rewriting Systems (LCTRSs) [Kop & Nishida,FroCoS 2013] $\mathcal{R} = \left\{ \begin{array}{l} \operatorname{sum}(x) \to 0 \ [0 \ge x] \\ \operatorname{sum}(x) \to x + \operatorname{sum}(x + -1) \ [\neg(0 \ge x)] \end{array} \right\}$			
Interpreting LCTRSs in TRSs				
Takahito Aoto (partly joint work with Koki Hayashi & Kanta Takahata) ^{Niigata University} ARI meeting, February 20–23, 2024, Kira Yosida	 (many-sorted) theory signature Σ_{th} = ⟨S_{th}, F_{th}⟩ and term signature Σ_{te} = ⟨S_{te}, F_{te}⟩ for f : τ₁ × ··· × τ_n → τ₀ ∈ F_{th}, we ask τ₀,, τ_n ∈ S_{th}. An underlying model (background theory) M over Σ_{th} is given, e.g. B, Z, ∧, +, All elements of carrier set M are supposed to exist in Σ_{th} as contants (which we call <i>values</i>), e.g. true, false, 0, -256, A rule has form ℓ → r [φ], where φ is a Σ_{th}-term of type Bool and root(ℓ) ∈ F_{te}. Calculations by operations in M is embodied: e.g. 1+1→2, 12 ≥ 10 → true, true ∧ false → false, 			
Rewrite Steps of LCTRSs (1)	Rewrite Steps of LCTRSs (2)			
$\mathcal{R} = \left\{ \begin{array}{l} \operatorname{sum}(x) \to 0 & [0 \ge x] \\ \operatorname{sum}(x) \to x + \operatorname{sum}(x + -1) & [\neg(0 \ge x)] \end{array} \right\}$ (over the integer arithmetic) • Rule Step $(\rightarrow_{\operatorname{rule}})$: rewriting using given rewrite rules • The rule $\ell \to r \ [\varphi]$ is applied when the constraint φ is satisfied. (Evaluation of constraint is a meta-calculation.) • Calculation Step $(\rightarrow_{\operatorname{calc}})$: rewriting induced by the underlying model • Each calculation step is applied for the term $f(v_1, \ldots, v_n)$ with $f \in \mathcal{F}_{\operatorname{th}}$ and values v_1, \ldots, v_n . $\begin{array}{c} \operatorname{sum}(1) \to_{\operatorname{rule}} & 1 + \operatorname{sum}(1 + -1) \\ \to_{\operatorname{calc}} & 1 + \operatorname{sum}(0) \end{array}$	$\mathcal{R} = \left\{ \begin{array}{ll} \min(x,y) \rightarrow z & [x=y+z] \\ \operatorname{inc}(x) \rightarrow x+1 \\ \Omega(x) \rightarrow \Omega(y) \end{array} \right\}$ ${\triangleright} \text{ Do we have: } \min(5,2) \rightarrow_{rule} 3 ? \dots \text{ YES}$ ${\triangleright} \text{ Do we have: } \min(5,2) \rightarrow_{rule} 5-2 ? \dots \text{ NO}$ ${\triangleright} \text{ Do we have: } \min(x,y) \rightarrow_{rule} x-y ? \dots \text{ NO}$ ${\triangleright} \text{ Do we have: } \min(x+1,1) \rightarrow_{rule} x ? \dots \text{ NO}$ ${\triangleright} \text{ Do we have: } \operatorname{inc}(x-1) \rightarrow_{rule} (x-1)+1 ? \dots \text{ YES}$ ${\triangleright} \text{ Do we have: } \Omega(1) \rightarrow_{rule} \Omega(2) ? \dots \text{ YES}$ ${\triangleright} \text{ Do we have: } \Omega(x+1) \rightarrow_{rule} \Omega(2) ? \dots \text{ YES}$ ${\triangleright} \text{ Do we have: } \Omega(x+1) \rightarrow_{rule} \Omega(2) ? \dots \text{ YES}$ ${\flat} \text{ Do we have: } \Omega(x+1) \rightarrow_{rule} \Omega(2) ? \dots \text{ YES}$ ${\flat} \text{ Do we have: } \Omega(x+1) \rightarrow_{rule} \Omega(2) ? \dots \text{ YES}$			
$\begin{array}{c} \rightarrow_{rule} & \underline{1+0} \\ \rightarrow_{calc} & 1 \end{array}$	$\mathcal{LV}ar(\ell \to r \ [\varphi]) = \mathcal{V}(\varphi) \cup (\mathcal{V}(r) \setminus \mathcal{V}(\ell))$			
2 / 24	3 / 24			

Definition of Rewrite Steps

Suppose that signature $\Sigma_{th} = \langle S_{th}, \mathcal{F}_{th} \rangle$, $\Sigma_{te} = \langle S_{te}, \mathcal{F}_{te} \rangle$, Σ_{th} -structure \mathcal{M} , and rewrite rules \mathcal{R} are given.

1. (rule step)

 $s \rightarrow_{\mathsf{rule}} t$

if $s = C[\ell\sigma]$ and $t = C[r\sigma]$ for some context C, rewrite rule $\rho : \ell \to r \ [\varphi] \in \mathcal{R}$, and substitution σ such that $\blacktriangleright \ \{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{Val}$, and

$$\blacktriangleright \models_{\mathcal{M}} \varphi \sigma \text{ (or equivalently, } \models_{\mathcal{M},\sigma} \varphi)$$

2. (calculation step)

 $s \to_{\mathsf{calc}} t$

if
$$s = C[f(v_1, \ldots, v_n)]$$
 and $t = C[v_0]$ for some context C ,
 $f \in \mathcal{F}_{\mathsf{th}}, v_0, v_1, \ldots, v_n \in \mathcal{V}al$ such that $f^{\mathcal{M}}(v_1, \ldots, v_n) = v_0$.

4 / 24

Interpreting LCTRSs by TRSs (2)

[Mitterwallner et al., IWC 2023]

Simulation of rule steps ⇒ provide all instantiation of rules by σ : LVar(ρ) → Val satisfying ⊨_M φσ.

$$\overline{\mathcal{R}} = \bigcup_{\rho: \ \ell \to r[\varphi] \in \mathcal{R}} \{ \ l\sigma \to r\sigma \mid \sigma: \mathcal{LV}ar(\rho) \to \mathcal{V}al, \models_{\mathcal{M}} \varphi\sigma \}$$

Proposition

 $s \rightarrow_{\mathsf{rule}} t \text{ (in LCTRSs) iff } s \rightarrow_{\overline{\mathcal{R}}} t \text{ (in TRSs).}$

Proof. (\Rightarrow) Let $s = C[\ell\sigma]$, $t = C[r\sigma]$ with $\rho : \ell \to r[\varphi] \in \mathcal{R}$. Take $\sigma_v = \sigma \mid (\mathcal{L}\mathcal{V}ar(\rho)), \sigma' = \sigma \mid (\mathcal{L}\mathcal{V}ar(\rho))^c$. By $\{\sigma(x) \mid x \in \mathcal{L}\mathcal{V}ar(\rho)\} \subseteq \mathcal{V}al$, we have $\sigma_v : \mathcal{L}\mathcal{V}ar(\rho) \to \mathcal{V}al, \sigma = \sigma' \circ \sigma_v, \models_{\mathcal{M}} \varphi \sigma_v$; so, $l\sigma_v \to r\sigma_v \in \overline{\mathcal{R}}$. Thus, $s = C[\ell\sigma] = C[(\ell\sigma_v)\sigma'] \to_{\overline{\mathcal{R}}} C[(r\sigma_v)\sigma'] = C[r\sigma] = t$. (\Leftarrow) Let $s = C[(\ell\sigma)\theta] \ t = C[(r\sigma)\theta]$ with $\ell\sigma \to r\sigma \in \overline{\mathcal{R}}$ and $\rho : \ell \to r \ [\varphi] \in \mathcal{R}$. As $\sigma : \mathcal{L}\mathcal{V}ar(\rho) \to \mathcal{V}al, \ \mathcal{V}(\ell\sigma, r\sigma) \subseteq (\mathcal{L}\mathcal{V}ar(\rho))^c$, take $\theta' = \theta \mid (\mathcal{L}\mathcal{V}ar(\rho))^c$, and we have $\ell(\sigma \uplus \theta') = (\ell\sigma)\theta' = (\ell\sigma)\theta$ and $r(\sigma \uplus \theta') = (r\sigma)\theta' = (r\sigma)\theta$. By $\mathcal{V}(\varphi) \subseteq \mathcal{L}\mathcal{V}ar(\rho), \models_{\mathcal{M}}\varphi(\sigma \uplus \theta')$. So, $s = C[\ell(\sigma \uplus \theta')] \to_{\text{rule}} C[r(\sigma \uplus \theta')] = t$.

Interpreting LCTRSs by TRSs (1)

[Mitterwallner et al., IWC 2023]

► Simulation of calculation steps ⇒ provide all underlying operations of *M* as rewrite rules.

$$\mathsf{rs}(\mathcal{M}) = \{ f(v_1, \dots, v_n) \to v_0 \\ | f \in \mathcal{F}_{\mathsf{th}}, v_0, \dots, v_n \in \mathcal{V}al, \\ f^{\mathcal{M}}(v_1, \dots, v_n) = v_0 \}$$

Proposition

 $s \rightarrow_{\mathsf{calc}} t \text{ (in LCTRSs) iff } s \rightarrow_{\mathsf{rs}(\mathcal{M})} t \text{ (in TRSs).}$

Proof. (\Rightarrow) Let $s = C[f(v_1, \ldots, v_n)]$, $t = C[v_0]$ with $f \in \mathcal{F}_{th}$, $v_0, \ldots, v_n \in \mathcal{V}al$ such that $f^{\mathcal{M}}(v_1, \ldots, v_n) = v_0$. Then $f(v_1, \ldots, v_n) \rightarrow v_0 \in \mathsf{rs}(\mathcal{M})$. Thus, $s = C[f(v_1, \ldots, v_n)] \rightarrow_{\mathsf{rs}(\mathcal{M})} C[v_0] = t$. (\Leftarrow) Let $s = C[\ell\sigma]$, $t = C[r\sigma]$ with $\ell \rightarrow r \in \mathsf{rules}(\mathcal{M})$. Then, by definition $\ell = f(v_1, \ldots, v_n)$ and $r = v_0$ for some $f \in \mathcal{F}_{th}$, $v_0, \ldots, v_n \in \mathcal{V}al$ such that $f^{\mathcal{M}}(v_1, \ldots, v_n) = v_0$. Thus, $s = C[\ell] = C[f(v_1, \ldots, v_n)]$ and $t = C[r] = C[v_0]$. By $f^{\mathcal{M}}(v_1, \ldots, v_n) = v_0$, we have $s \rightarrow_{\mathsf{calc}} t$. \Box

Example.

$$\mathcal{R} = \left\{ \begin{array}{rrr} \min(x, y) & \to & z & [x = y + z] \\ \inf(x) & \to & x + 1 \\ \Omega(x) & \to & \Omega(y) \end{array} \right\}$$

$$\overline{\mathcal{R}} = \begin{cases} \min (0,0) & \to & 0, \\ \min (0,1) & \to & -1, \\ \operatorname{inc}(x) & \to & x+1, \\ \Omega(x) & \to & \Omega(0), \\ \Omega(x) & \to & \Omega(-1), \\ \end{array} \xrightarrow{} \begin{array}{c} \min (1,0) & \to & 1, \\ \operatorname{inc}(1,0) & \to & -1, \\ \operatorname{inc$$

minus(5, 2)	\rightarrow_{rule}	3	minus(5, 2)	≁rule	5 - 2
inc(x-1)	\rightarrow_{rule}	(x - 1) + 1	minus(x,y)	≁rule	x - y
$\Omega(1)$	\rightarrow_{rule}	$\Omega(2)$	minus(x+1,1)	≁rule	x
$\Omega(x+1)$	\rightarrow_{rule}	$\Omega(2)$	$\Omega(x+1)$	$ \not\rightarrow_{rule} $	$\Omega(x+2)$

Theorem

 $s[\pi] \sim t[\psi] \text{ iff } \llbracket s[\pi] \rrbracket = \llbracket t[\psi] \rrbracket.$

Proof. It suffices to show that the following two are equivalent:

1. $\forall \gamma$: respecting $s[\pi]$, $\exists \delta$: respecting $t[\psi]$ such that $s\gamma = t\delta$ 2. $[\![s[\pi]]\!] \subseteq [\![t[\psi]]\!]$ $(1 \Rightarrow 2)$ Suppose $u \in [\![s[\pi]]\!]$. Then $u = s\gamma$ for some γ that respects $s[\pi]$. Then,

there exists δ respecting $t[\psi]$ such that $s\gamma = t\delta$. Thus, there exists δ respecting $t[\psi]$ such that $u = t\delta$. Hence, $u \in [\![t[\psi]]\!]$. (2 \Rightarrow 1) Suppose that γ respects $s[\pi]$. Then $s\gamma \in [\![s[\pi]]\!]$. Thus, $s\gamma \in [\![t[\psi]]\!]$. Then, there exists δ respecting $t[\psi]$ such that $s\delta = t\delta$. Proof. (\Rightarrow) Suppose $s = C[f(s_1, \ldots, s_n)]_p$ with $f \in \mathcal{F}_{th}$ $s_1, \ldots, s_n \in \mathcal{V}(\pi) \cup \mathcal{V}al$, and $t = C[x]_p$ with x: fresh variable, and $\psi = (\pi \land x = f(s_1, \ldots, s_n))$. We now show $\{u' \mid u \in [\![\![s[\pi]]\!]\!], u \rightarrow_{\mathsf{calc},p} u'\} = [\![t[\psi]]\!]$. (\subseteq) Let $u \in [\![s[\pi]]\!]\}$. Then, $u = s\gamma$ for some γ respecting π . We have $u|_p = (s\gamma)|_p = (s|_p)\gamma = f(s_1, \ldots, s_n)\gamma = f(s_1\gamma, \ldots, s_n\gamma)$. Since $s_1, \ldots, s_n \in \mathcal{V}(\pi) \cup \mathcal{V}al$, and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$, $s_1\gamma, \ldots, s_n\gamma \in \mathcal{V}al$. Thus, $u \rightarrow_{\mathsf{calc},p} u[v]_p = u'$ with $v = f^{\mathcal{M}}(s_1\gamma, \ldots, s_n\gamma)$. Take δ such that $\delta(x) = v$ and $\delta(y) = \gamma(y)$ for $y \neq x$. Then $t\delta = C[x]_p\delta = C\gamma[v]_p = s\gamma[v]p = u[v]_p$. Also, by $x \notin \mathcal{V}(\psi)$, we have $\pi\gamma = \pi\delta$. Furthermore, $\delta(x) = v = f^{\mathcal{M}}([\![s_1\delta]]_{\mathcal{M}}, \ldots, [\![s_n\delta]]_{\mathcal{M}}) = [\![f(s_1, \ldots, s_n)\gamma]]_{\mathcal{M}}$.

Thus, $\models_{\mathcal{M}} (\pi \land x = f(s_1, \ldots, s_n))\delta$. Hence, δ respects $t[\psi]$ and $u' = t\delta$. Hence, $u' \in [t[\psi]]$. (\supset) Suppose $w \in [t[\psi]]$. Then $w = t\delta$ for some δ respecting $t[\delta]$. Thus, $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subset \mathcal{V}al$ and $\models_{\mathcal{M}} \psi \delta$. As $t = C[x]_n$ with x: fresh variable, $t\delta = C\delta[\delta(x)]_p$. We now show $u \to_{\mathsf{rule},p} w$ for some $u \in [s[\pi]].$ Firstly, as $\psi = (\pi \wedge x = f(s_1, \dots, s_n))$, we have $\models_{\mathcal{M}} \pi \delta$ and $\mathcal{V}(\pi) \subset \mathcal{V}(\psi)$. Thus, by $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subset \mathcal{V}al$, we have $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subset \mathcal{V}al$. Together with $\models_{\mathcal{M}} \pi \delta$, we obtain that δ respects π . Moreover, we have $\models_{\mathcal{M}} \delta(x) = f(s_1 \delta, \dots, s_n \delta)$, i.e. $\delta(x) =$ $\llbracket \delta(x) \rrbracket_{\mathcal{M}} = f^{\mathcal{M}}(\llbracket s_1 \delta \rrbracket_{\mathcal{M}}, \dots, \llbracket s_n \delta \rrbracket_{\mathcal{M}}) = \llbracket f(s_1, \dots, s_n) \delta \rrbracket_{\mathcal{M}}.$ Now, take $u = w[f(s_1, \ldots, s_n)\delta]_p$. Since $s_1\delta, \ldots, s_n\delta \in \mathcal{V}al$, and $f^{\mathcal{M}}(s_1\delta,\ldots,s_n\delta) = \llbracket f(s_1,\ldots,s_n)\delta \rrbracket_{\mathcal{M}} = \llbracket u |_n \rrbracket_{\mathcal{M}}$, we have $u \rightarrow_{\mathsf{rule},p} u[\delta(x)] = w[\delta(x)] = w.$ Then, $u = w[f(s_1, \ldots, s_n)\delta]_p = t\delta[f(s_1, \ldots, s_n)\delta]_p =$ $t[f(s_1,\ldots,s_n)]_p\delta = C[f(s_1,\ldots,s_n)]_p\delta = s\delta$. Hence, $u = s\delta$ and δ respects π . Thus, $u \in \llbracket s[\pi] \rrbracket$.

12 / 24

Lemma

Suppose

- π is satisfiable, $p \in Pos(s)$,
- ▶ for any $u \in [\![s[\pi]]\!]$ there exists u' such that $u \to_{\mathsf{calc}, p} u'$, and
- $\blacktriangleright \ \{u' \mid u \in \llbracket s[\pi] \ \rrbracket, u \to_{\mathsf{calc}, p} u'\} = \llbracket t[\psi] \ \rrbracket.$

Then, $s[\pi] \rightarrow_{\mathsf{calc},p} \circ \sim t[\psi]$.

Proof. By satisfiability, $[\![s[\pi]]\!] \neq \emptyset$. Thus, there exists $u \in [\![s[\pi]]\!]$ and u', such that $u \to_{\mathsf{calc},p} u'$. Thus, $u = C[f(u_1, \ldots, u_n)]_p$ for some $f \in \mathcal{F}_{\mathsf{te}}$, and $u_1, \ldots, u_n \in \mathcal{V}al$. By $u \in [\![s[\pi]]\!]$, $u = s\gamma$ for some γ such that γ respects π . Thus, $s = \hat{C}[f(s_1, \ldots, s_n)]_p$ with $\hat{C}\gamma = C$ and $s_i\gamma = u_i$ $(1 \le i \le n)$. Suppose $s_i \notin \mathcal{V}al$. If $s_i \notin \mathcal{V}(\pi)$, then one can modify γ such as $s_i\gamma \notin \mathcal{V}al$, while keep respecting π . This contradicts our second condition. Thus, $s_i \in \mathcal{V}(\pi) \cup \mathcal{V}al$ for $i = 1, \ldots, n$. Thus, $s[\pi] \to_{\mathsf{calc},p} s[x]_p [\pi \land x = f(s_1, \ldots, s_n)]$. It remains to show $\{u' \mid u \in [\![s[\pi]]\!], u \to_{\mathsf{calc},p} u'\} = [\![s[x]_p [\pi \land x = f(s_1, \ldots, s_n)]\!]$. But this follows as $s|_p = f(s_1, \ldots, s_n)$. $\begin{array}{l} (\Leftarrow?) \\ \hline \text{Counterexample (1).} \\ \hline \text{Let } s[\pi] = +(x,x)[x = 0 \lor x = 1] \text{ and } t[\psi] = y[y = 0 \lor y = 2]. \\ \hline \text{Then, } \llbracket s[\pi] \rrbracket = \{+(0,0),+(1,1)\}. \\ \hline \text{Thus, } \{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to_{\mathsf{calc},\epsilon} u'\} = \{0,2\} = \llbracket t[\psi] \rrbracket. \\ \hline \text{But } s \ [\pi] \not\rightarrow_{\mathsf{calc},\epsilon} t \ [\psi]. \\ \hline \text{Here,we only have} \end{array}$

$$\begin{array}{ll} s[\pi] & \rightarrow_{\mathsf{calc}} & y[(x=0 \lor x=1) \land y=+(x,x)] \\ & \sim & y[y=0 \lor y=2] \end{array}$$

 $\begin{array}{l} \begin{array}{l} \hline \text{Counterexample (2).} \\ \hline \text{Let } s[\pi] = +(x,x)[x \neq x] \text{ and } t[\psi] = +(x,y)[x \neq x \land y \neq y]. \\ \hline \text{Then, } \llbracket s[\pi] \rrbracket = \llbracket t[\psi] \rrbracket = \emptyset, \text{ and thus,} \\ \{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{calc},\epsilon} u'\} = \emptyset = \llbracket t[\psi] \rrbracket. \\ \hline \text{But } s \ [\pi] \not\rightarrow_{\mathsf{calc},\epsilon} t \ [\psi]. \end{array}$

13/24

Interpreting Calculation Steps on Constrained Terms

So, we have

Theorem

If $s[\pi] \to_{\mathsf{calc},p} t[\psi]$, then $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to_{\mathrm{rs}(\mathcal{M}),p} u'\} = \llbracket t[\psi] \rrbracket.$

Theorem

Suppose

- ▶ π is satisfiable, $p \in Pos(s)$,
- ▶ for any $u \in [\![s[\pi]]\!]$ there exists u' such that $u \to_{\mathrm{rs}(\mathcal{M}),p} u'$, and
- ► { $u' \mid u \in [\![s[\pi]]\!], u \rightarrow_{\operatorname{rs}(\mathcal{M}), p} u'$ } = [[$t[\psi]$]. Then, $s[\pi] \rightarrow_{\operatorname{calc}, p} \circ \sim t[\psi]$.

What is the precise correspondence? Bisimilarity? Functor?

Interpreting Rule Steps on Constrained Terms ...

At this point, I remind that [Kop & Nishida, FroCoS 2013] already shows

Proposition [Kop & Nishida, FroCoS 2013]

If $s[\pi] \to t[\psi]$ then for any γ that respect π there exists δ that respect ψ such that $s\gamma \to t\psi$.

In our terminology, this is equivalent to:

Proposition

 $\text{If } s[\pi] \to t[\psi] \text{ then } \{u' \mid u \in \llbracket s[\pi] \ \rrbracket, u \to u'\} \subseteq \llbracket t[\psi] \ \rrbracket.$

The following our version is slightly stronger than this (?).

Conjecture

 $\text{If }s[\pi] \to t[\psi] \text{ then } \{u' \mid u \in \llbracket s[\pi] \ \rrbracket, u \to u'\} = \llbracket t[\psi] \ \rrbracket.$

16 / 24

(⊇)

Suppose $w \in \llbracket t[\pi] \rrbracket$. Then, $w = t\delta$ with δ respecting π . Thus, $\models_{\mathcal{M}} \pi\delta$ and $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$. Also, by $s[\pi] \rightarrow_{\mathsf{rule},p} t[\pi]$, we have $w|_p = t|_p\delta = (r\sigma)\delta$. Since $\{\sigma(x) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}al$ and $\mathcal{V}(\pi) \subseteq \mathcal{LV}ar(\rho)$, we have $\{\delta(\sigma(x)) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}al$. By $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$, we have $\models_{\mathcal{M}} (\pi\delta \Rightarrow \varphi\sigma\delta)$, and hence by $\models_{\mathcal{M}} \pi\delta$, we have $\models_{\mathcal{M}} \varphi\sigma\delta$. Also, $w = t\delta = C[r\sigma]\delta = C\delta[r\sigma\delta]$. Take $u = C\delta[\ell\sigma\delta]$. Then, $u = C\delta[\ell\sigma\delta] \rightarrow_{\mathsf{rule},p} C\delta[r\sigma\delta] = w$. Since $s = C[\ell\sigma]_p$, we have $u = C\delta[\ell\sigma\delta] = C[\ell\sigma]\gamma = s\gamma$. Since γ respects π , it follows $u \in \llbracket s[\pi] \rrbracket$.

Interpreting Rule Steps on Constrained Terms

Lemma

If $s[\pi] \rightarrow_{\mathsf{rule},p} t[\pi]$, then $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{rule},p} u'\} = \llbracket t[\pi] \rrbracket$.

Proof. Suppose π is satisfiable, $s = C[\ell\sigma]_p$ and $t = C[r\sigma]_p$, with $\rho: \ell \to r \ [\varphi] \in \mathcal{R}$, and $\operatorname{Dom}(\sigma) = \mathcal{V}(\ell, r, \varphi)$, and $\{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{Val}$, and $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$. We now show $\{u' \mid u \in \llbracket s[\pi] \], u \to_{\operatorname{rule},p} u'\} = \llbracket t[\pi] \].$ (\subseteq) Suppose $u \in \llbracket s[\pi] \]$. Then, $u = s\gamma$ with γ respecting π . Thus, $\models_{\mathcal{M}} \pi\gamma$ and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{Val}$. Also, by $s[\pi] \to_{\operatorname{rule},p} t[\pi]$, we have $u|_p = s|_p\gamma = (\ell\sigma)\gamma$. Since $\{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{Val}$ and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{Val}$, we have $\{\gamma(\sigma(x)) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{Val}$. By $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$, we have $\models_{\mathcal{M}} (\pi\gamma \Rightarrow \varphi\sigma\gamma)$, and hence by $\models_{\mathcal{M}} \pi\gamma$, we have $\models_{\mathcal{M}} \varphi\sigma\gamma$. Thus, $u = s\gamma = C[\ell\sigma]\gamma = C\gamma[\ell\sigma\gamma] \to_{\operatorname{rule}} C\gamma[r\sigma\gamma]$. Let $u' = C\gamma[r\sigma\gamma]$. Since $t = C[r\sigma]_p$, we have $u' = C\gamma[r\sigma\gamma] = C[r\sigma]\gamma = t\gamma$. Since γ respects π , it follows $u' \in \llbracket t[\pi] \rrbracket$.

17 / 24

Conjecture

Suppose

- ▶ π is satisfiable, $p \in Pos(s)$, $\rho \in \mathcal{R}$,
- ▶ for any $u \in [s[\pi]]$ there exists u' such that $u \rightarrow_{\rho,p} u'$, and
- $\blacktriangleright \{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to_{\rho, p} u'\} = \llbracket t[\pi] \rrbracket.$ Then, $s[\pi] \to_{\text{rule}, p} t[\pi].$

Proof. Let $\rho: \ell \to r \ [\varphi] \in \mathcal{R}$. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u', such that $u \to_{\rho,p} u'$. Thus, $u = C[\ell\sigma]_p, \ u' = C[r\sigma]_p, \ \{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{Val}$, and $\models_{\mathcal{M}} \varphi \sigma$. By $u \in \llbracket s[\pi] \rrbracket, \ u = s\gamma$ for some γ such that γ respects π .

Thus, by $u = s\gamma$ and $u = C[\ell\sigma]_p$, we know $s = \hat{C}[\hat{\ell}\hat{\sigma}]_p$, $\hat{C}\gamma = C$ and $(\hat{\ell}\hat{\sigma})\gamma = \ell\sigma$??? ...If $\hat{\ell} \neq \ell$ then we can not rewrite $s[\pi]$... Counterexample.

 $\mathcal{R} = \{\rho: \mathsf{f}(\mathsf{0}) \to \mathsf{1}\}$

Take $s[\pi] = f(x)[x = 0]$ and $t[\pi] = 1[x = 0]$. Then, [[$s[\pi]$]] = {f(0)} and [[$t[\pi]$]] = {1}. Take $p = \epsilon$. Then,

- $\blacktriangleright \ \pi \text{ is satisfiable}\checkmark, \ p\in \operatorname{Pos}(s)\checkmark, \ \rho\in \mathcal{R}\checkmark,$
- \blacktriangleright for any $u\in [\![\ s[\pi] \]\!]$ there exists u' such that $u\to_{\rho,p} u'\checkmark$, and

But we don't have $f(x)[x = 0] \rightarrow 1[x = 0]$.

$s[\pi] \rightarrow_{\mathsf{rule}} t[\psi]$ if

- π is satisfiable and $\psi = \pi$.
- $\blacktriangleright \ s = C[\ell\sigma] \text{ and } t = C[r\sigma] \text{ with } \rho: \ell \to r \ [\varphi] \in \mathcal{R}$
- $\blacktriangleright \text{ Dom}(\sigma) = \mathcal{V}(\ell, r, \varphi)$
- $\blacktriangleright \ \{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{Val}$
- $\blacktriangleright \models_{\mathcal{M}} (\pi \Rightarrow \varphi \sigma)$

20 / 24

Conjecture

Suppose

- \blacktriangleright \mathcal{R} has value-free-pattern,
- π is satisfiable, $p \in Pos(s)$, $\rho \in \mathcal{R}$,
- ▶ for any $u \in [\![s[\pi]]\!]$ there exists u' such that $u \to_{\rho,p} u'$, and
- $\blacktriangleright \ \{u' \mid u \in \llbracket s[\pi] \ \rrbracket, u \to_{\rho, p} u'\} = \llbracket t[\pi] \ \rrbracket.$

Then, $s[\pi] \rightarrow_{\mathsf{rule},p} t[\pi]$.

Proof. Let $\rho : \ell \to r \ [\varphi] \in \mathcal{R}$. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u', such that $u \to_{\rho,p} u'$. Thus, $u = C[\ell\sigma]_p, \ u' = C[r\sigma]_p, \ \{\sigma(x) \mid x \in \mathcal{LVar}(\rho)\} \subseteq \mathcal{Val}$, and $\models_{\mathcal{M}} \varphi \sigma$. By $u \in \llbracket s[\pi] \rrbracket, \ u = s\gamma$ for some γ such that γ respects π . W.l.o.g.

one can take u in such a way that $\gamma(x) \notin \mathcal{V}al$ for any $x \notin \mathcal{V}(\pi)$.

Thus, by $u = s\gamma$ and $u = C[\ell\sigma]_p$, we know $C[\ell\sigma]_p = s\gamma$. Since $p \in Pos(s)$, we can take $s = \hat{C}[s']_p$.

Value-free-pattern LCTRSs

Definition

A rewrite rule $\ell \to r \ [\varphi]$ has *value-free-pattern* if ℓ does not contain value. An LCTRS \mathcal{R} is value-free-pattern if so are all rules.

Lemma

For any rewrite rule ρ there exists a value-free-pattern rewrite rule ρ' such that $\forall s, t. \ (s \rightarrow_{\rho} t \text{ iff } s \rightarrow_{\rho'} t).$

Proof. This is because for any $\rho: C[v_1, \ldots, v_n] \to r[\varphi]$ (with all values v_1, \ldots, v_n in LHS indicated), one can take $\rho': C[x_1, \ldots, x_n] \to r[\varphi \land x_1 = v_1 \land \cdots \land x_n = v_n]$, which is value-free-pattern.

Thus, restricting rules to value-free-pattern is not a essential restriction.

21/24

Thus $C[\ell\sigma]_p = \hat{C}[s']_p\gamma = \hat{C}\gamma[s'\gamma]_p$. Thus, $C = \hat{C}\gamma$ and $\ell\sigma = s'\gamma$. Then, since ℓ does not contain values, one can let $s' = \ell\sigma'$ for some σ' . Then, $\ell\sigma = s'\gamma = \ell\sigma'\gamma$ and $\sigma'(x) \in \mathcal{V} \cup \mathcal{V}al$ for $x \in \mathcal{L}\mathcal{V}ar(\rho)$ and $s = \hat{C}[s'] = \hat{C}[\ell\sigma']$. Let $x \in \mathcal{L}\mathcal{V}ar(\rho)$. By $\sigma(x) \in \mathcal{V}al$ and $\sigma(x) = \gamma(\sigma'(x))$, we have either $\sigma'(x) \in \mathcal{V}$ or $\sigma'(x) \in \mathcal{V}al$. In the former case, we can take $\sigma'(x) = x'$ for some $x' \in \mathcal{V}(\pi)$, because of the way we take u and $\gamma(\sigma'(x)) \in \mathcal{V}al$.

Next, do we have $\models_{\mathcal{M}} (\pi \Rightarrow \varphi \sigma')$?? For this, we have to show that, for any valuation ξ on \mathcal{M} , $\models_{\mathcal{M},\xi} \pi$ implies $\models_{\mathcal{M},\xi} \varphi \sigma'$. Suppose $\models_{\mathcal{M},\xi} \pi$. Then $\models_{\mathcal{M}} \pi \xi$. Thus, we could take $u(=s\gamma)$ such that $\gamma(x) = \xi(x)$ for all $x \in \mathcal{V}(\pi)$. From $\models_{\mathcal{M}} \varphi \sigma$, maybe we get $\models_{\mathcal{M}} \varphi \sigma' \gamma$.(?) (Then, we have $\models_{\mathcal{M},\xi} \varphi \sigma'$.) Currrently, I don't know the conjecture holds, or still there is a further counterexample.

Concluding Remarks

From perspective of interpreting LCTRSs in TRSs:

- interpetation of rewrite steps <u>on terms</u> seems to be understood clearly.
- ▶ for interpetation of rewrite steps <u>on constrained terms</u>:
 - ▶ it seems there is a natural interpretation
 [[·]] : CnstrTerm → TermSet.
 - \blacktriangleright equivalence relation \sim on CnstrTerm is mapped to the identity relation on TermSet.
 - ▶ binary relation →_{calc} on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet in terms of CnstrTerm is not clear.
 - ▶ binary relation →_{rule} on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet in terms of CnstrTerm is unclear.
- Some related questions
 - What is the expressivity of CnstrTerm? I.e., when a term set is expressed by a constrained term?
 - Is · ~ · decidable? (YES ⇒ [Kojima & Nishida, PRO2023]) More generally, what kinds of predicates on TermSet is computationally solved by means of CnstrTerm?

24 / 24