Interpreting LCTRSs in TRSs

Takahito Aoto
(partly joint work with Koki Hayashi & Kanta Takahata)

Niigata University

ARI meeting, February 20-23, 2024, Kira Yosida

Logically Constrained Term Rewriting Systems (LCTRSs)
[Kop & Nishida,FroCoS 2013]

0[0> x] }

[ sum(x)
R { 2+ sum(z + —1) [~(0 > 2)]
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» (many-sorted) theory signature ¥y, = (Sth, Fth) and term
signature Xie = (Ste, Fte)

for f i1y X - X T, = 79 € Fih, We ask 19, ...,Tn € Sth-

v

» An underlying model (background theory) M over %y, is
given, e.g. B, Z, N\, +, ...

» All elements of carrier set | M| are supposed to exist in 3y, as
contants (which we call values), e.g. true, false, 0, —256, . . .

» A rule has form ¢ — r [p], where ¢ is a X,-term of type Bool
and root(?) € Fre.

» Calculations by operations in M is embodied: e.g.

1+1—2, 12> 10 — true, true A false — false, ...
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Rewrite Steps of LCTRSs (1) Rewrite Steps of LCTRSs (2
B { sum(z) — 0 [0 > 7] } minus(z,y) — =2 [z =y + 7]
| sum(z) — x+sum(z+—1) [=(0>x)] R =< inc(x) - x+1
(over the integer arithmetic) Q(z) = Qy)
» Rule Step (—ye): rewriting using given rewrite rules > Do we have: minus(5,2) —e 3 7 - YES
» The rule £ — r [p] is applied when the constraint ¢ is > Do we have: minus(5,2) —rye 5—2 7 . NO
satisfied. (Evaluation of constraint is a meta-calculation.) » Do we have: minus(z,y) —wle ¢ —y ? ... NO
» Calculation Step (—caic): rewriting induced by the underlying » Do we have: minus(z +1,1) = ez ? ... NO
model » Do we have: inc(x — 1) e (x —1)+1 7 .. YES
> E?ch calculation step is applied for the term f(v1,...,v,) > Do we have: Q(1) —ue Q2) ? YES
with f € Fi, and values vy, ..., vp,. > Do we have: Q(z + 1) —rue A +2) ? NO
sum(1) e 1+sum(14 —1) » Do we have: Q(z + 1) —pe 2(2) 7 ... YES
—cale 1+ sum(0) Instantiation of logical variables are restricted to values.
—rule 140
—ale 1 LVar(t =1 [¢]) = V(o) U (V(r) \ V(D))
2/24 3/24




Definition of Rewrite Steps

Suppose that signature X, = (Sih, Fth), Zte = (Stes Fte)s
Yth-structure M, and rewrite rules R are given.

1. (rule step)
S —rule t

if s = C[lo] and t = C[ro] for some context C, rewrite rule
p:l—r[p] €R, and substitution o such that
» {o(z) |z € LYVar(p)} C Val, and
» = o (or equivalently, = @)
2. (calculation step)

Interpreting LCTRSs by TRSs (1)
[Mitterwallner et al., IWC 2023]

» Simulation of calculation steps
= provide all underlying operations of M as rewrite rules.

rs(M) ={ f(vr,...,vn) = o
| f € Fin, 00, .., vn € Val,
Moy, .. o) =1 }

Proposition
s —rcale t (in LCTRSs) iff s — g aq) £ (in TRSs).

S —veale t Proof. (=) Let s = C[f(v1,...,v,)], t = Clvo] with f € Fin, vo, ..., v,
€ Val such that fM(vy,...,v,) =vg. Then f(v1,...,v,)—vg € rs(M).
if s =C[f(vi,...,v,)] and t = Cluvg| for some context C, Thus, SZC[f(vl,-. )} sy Cloo) = .
f € Fin, vo,01, ..., vy € Val such that fM(vy,... v,) = vo. (<) Let s = C[lo], t = Clro] with £ — r € rules(M). Then, by
definition ¢ = f(vl,...,vn) and r = vy for some f € Fin, vg,...,0n €
Val such that fM(vy,...,v )—vo Thus, s = C[{] = C[f(v1,...,0,)]
and t = Cr] = Clvy]. Byf (V1,...,U,) = vg, we have s —qc t. O
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Interpreting LCTRSs by TRSs (2) Example.
[Mitterwallner et al., IWC 2023]
» Simulation of rule steps minus(v,y) — 2 [z =y + 2]
= provide all instantiation of rules by o : LVar(p) — Val R =4 inc(z) - z+1
satisfying = o Q(x) - Qy)
R= U A{lo—=ro|o:LVar(p) = Val,leam g0 } minus(0,0) — 0, minus(1,0) — 1,
pr LorlpleR minus(0,1) — -1, ...
— R =< inc(z) — x+1,
aw) - 0. aw )
s —rrule t (in LCTRSs) iff s =5t (in TRSs). Q(x) - Q(-1), ...
Proof. (=) Let s = C[lo], t = Clro] with p: £ — r[p| € R. Take o, =
ol(LVar(p)), o' = o|(LVar(p))°. By {o(x) | x € LVar(p)} C Val, we minus(5,2) e 3 minus(5, 2) S 52
have o, : LVar(p) = Val, 0 = ¢’ o0y, Eam woy; so, lo, — 1o, € R. inc(z —1)  —ge (z—1)+1 minus(z, y) Bole T—y
Thus, s = Cllo] = C[(loy,)o'] =5 C[(roy)o’'] = C[ro] =t. (<) Let Q(1) e Q(2) minus(z +1,1)  Aue @
= C[(to)d] t = C[(ro)f] with o —ro € Rand p: £ — 7 [p] € R. As Qaz+1) e 22 Qz +1) Fre Q2 +2)
o: LVar(p) = Val, V(lo,ra) C (LVar(p)), take 0" = 0|(LVar(p))°,
and we have {(c W 0') = (lo)0' = (£o)0 and r(c W) = (ro)d’ = (ro)0.
By V(p) C LVar(p), Epp(oW0'). So,s=Cll(ow )] =ueClr(ow )] =t. g0 7/24




Rewriting on Contrained Terms

[Kop & Nishida,FroCoS 2013] 3.
Three ingredients: s[m| ~ t[1)], s[r] —calc t[Y], and s[m] —ule t[Y]. s[m] —rute HY]
L if
s[r] ~ t[y] » 7 is satisfiable and ¢ = .
if » s=C[loland t = Cro] with p: L =1 [p] € R
. : _ . B » Dom(o) = V(4,1 ¢)
> =
V~: respecting s[r|, 39: respecting t[t] such that sy = 4. > {o(z) |z € LVar(p)} C V(r) U Val
> V§: respecting t[1], 3v: respecting s[m| such that td = sv. > = (7= o)
7 respects s[n] < {v(z) | z € V(7)} C Val and =pq Ty
d respects t[¢)] < {d(z) |z € V(¢)} € Val and =g Y6
2 How can we interpret rewriting on contrained terms?
5[7] —calc t[w] .
if
> s=C[f(s1,-.-,8,)] with f € Fin, S1,...,8, € V() U Val,
» t = C[z] with z: fresh variable
> ZZ): (77/\17:f(81,...,8n))
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Interpreting Contrained Terms Interpreting Calculation Steps on Constrained Terms
Natural(?) idea:
Lemma(?)
[sir]] = A{sv|[{v(2) [z €V(m)} S Val, Fm v} — /
(= {svy |~ respects s[r]}) s[7] —calep t] iff {u' [uw € [ s[r] |, u —caicp u'} = [ t[¢] ].
Example. Proof. (=) Suppose s = C[f(s1,...,5n)]p with f € Fin
[z+y[z>0]] {04+y,1+(y+1),1+(x+y),...} S1,...,5n € V() UVal, and t = C[z], with z: fresh variable, and
= {n+t|neztecT(F,V) Y= (mANx=f(s1,...,5n)).
We now show {v' | u € [ s[n] [,u —rcaicp v'} = [ t[¢] |.
() Let w e [ sfa] |}. Then, u = s for some  respecting 7. We
sx] ~ t[y] iff [ s[x] | = [ t[¢] |- have ul, = (s7)lp = (slp)y = f(s1,- -, 8n)y = f(517, -+, 8n7).
Since s1,...,8, € V(m)UVal, and {y(z) | x € V(m)} C Val,
Proof. It suffices to show that the following two are equivalent: $17, -+ $n7y € Val. Thus, u —aicp ufv], = u/ with
1. V~: respecting s[r], 39: respecting t[t)] such that sy =t v=fM(s17,...,527).
2. [s[n]] S [t]] Take 0 such that §(z) = v and §(y) = v(y) for y # x. Then
there kst 3 vespecing (1] such that o - (5. Ths there exias 8 respecting 11 to = Clalpo = Cylvl, = sylvp = ulv],. Also, by x & V(1)) we
such that u = t6. Hence, u € [ t[¢] ]. have mvy = wd. Furthermore,
(2 = 1) Suppose that v respects s[r]. Then sy € [ s[n] [. Thus, sy € [ t[¢] |. Then, — oy = M —
there existspéprespecting t[z/;r]) such that s§ = tg. ! O 5(1’) v f ([[815]]'/\4’ Y [[Sné]]M) [[f(Sl, Y Sn)"}/]]M.
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Thus, Eum (T Ax = f(s1,...,8n))0. Hence, 0 respects t[¢)] and
u' =1t). Hence, v/ € [ t[¢)] |.

(D) Suppose w € [ t[y] [. Then w = té for some § respecting t[0].
Thus, {6(z) | z € V(¢)} C Val and = 0. As t = C[z], with z:
fresh variable, t§ = C6[6(x)],. We now show u —yie, w for some
ue | s ].

Firstly, as ¢ = (m Ax = f(s1,...,5p)), we have = m and

V(m) C V(). Thus, by {0(z) | z € V(¢)} C Val, we have

{0(x) | z € V(m)} C Val. Together with = 7, we obtain that §
respects 7.

Moreover, we have = 6(2) = f(s10,...,8,0), i.e. §(z) =
Hé(x)ﬂM = fM([[Sl(S]]Ma R [[5716]]/\4) = Hf(slv e 7871)5]]/\4'

Now, take u = w[f(s1,...,sn)d]p. Since s16,...,s,0 € Val, and
fM(s10, ..., 808) = [f(51,- -, 50)0]m = [ulp]m, we have

U —rlep w0 (2)] = wlo(z)] = w.

Then, u=w[f(s1,...,50)0]p = t6[f(s1,...,50)0]p =
tf(s1,...,8n)]p0 = C[f(s1,...,5n)]p0 = sd. Hence, u = s6 and ¢
respects m. Thus, u € [ s[x] |.
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(<=7)

Counterexample (1).

Let s[r] = +(z,z)[x =0Vz=1] and t{] = yly =0V y = 2].
Then, [ s[7] | = {+(0,0),+(1,1)}.

Thus, {u’ ’ u e [[ 3[77] ﬂ,u —calc,e ul} = {072} = [[ t[w] ]]

But s [77] 7L>calc,e t W]

Here,we only have

S[ﬂ-] —7calc y[(x =0Ve= ) Ny = +($7SU)]

Counterexample (2).

et 5[] = +(, 2)[z # o] and t{y] = + (&, )z £ Ay £ ).
Then, [ s[x] | =[ t[¢)] | =0, and thus,

{u' [ue[s[r]]u—cicew'} =0=[t[]]

But s [7] Acalce t [¢].
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Lemma

Suppose
» 7 is satisfiable, p € Pos(s),
» for any u € [ s[n] | there exists u' such that u —c,icp @/, and
> {u' |ue[sr]],u—alp v} =[]

Then, s[m] —caicp © ~ t[1].

Proof. By satisfiability, [ s[w] | # (). Thus, there exists u € [ s[n] |
and v/, such that © —caicp v'. Thus, u= C[f(u1,...,uy)], for
some f € Fie, and uq,...,u, € Val.

By u € [ s[n] ], u = s for some  such that ~y respects w. Thus,
s =C[f(s1,...,5n)]p with Cy = C and s;y = u; (1 <i < n).
Suppose s; € Val. If s; & V(m), then one can modify ~ such as
siy ¢ Val, while keep respecting m. This contradicts our second
condition. Thus, s; € V(7)) U Val for i =1,...,n.

Thus, s [7] =calep slz]p [T Az = f(s1,...,5,)]. It remains to
show {u' | u € [ s[n] ],u —calcp v'} = [ s[zlp [T Az = f(s1,..., sn)] ]. But this

follows as s|, = f(s1,...,5n).
14/24

Interpreting Calculation Steps on Constrained Terms
So, we have

If s[m] —calc,p t[1)], then
{u' | wel s ], u—=wme v’} =111

Theorem
Suppose
» 7 is satisfiable, p € Pos(s),

> for any u € [ s[n] | there exists u’ such that u —gaq)p ¥,
and

> {u |ue[s[r]],u—wmyp '} =[] ]
Then, s[m] —calcp © ~ t[Y].

What is the precise correspondence? Bisimilarity? Functor?
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Interpreting Rule Steps on Constrained Terms ...

At this point, | remind that [Kop & Nishida,FroCoS 2013] already
shows

Proposition [Kop & Nishida, FroCoS 2013|

If s[m] — t[t)] then for any v that respect 7 there exists J that
respect v such that sy — t1).

In our terminology, this is equivalent to:
Proposition

If s[r] — t[¢)] then {v' |u € [ s[x] [,u — o'} C [ t[¢] ].

The following our version is slightly stronger than this (7).

Conjecture
If s[7] — t[¢)] then {u' |uw € [ s[n] J,u — o'} =] t[¢] ].

Interpreting Rule Steps on Constrained Terms

Lemma
If s[7r] —rulep tm], then {v' | u € [ s[n] |, u —wuep w'} = [ t[n] ].

Proof. Suppose 7 is satisfiable, s = C[lo], and t = C[ro], , with
p:l—rp] €R, and Dom(c) =V(¢,r,¢), and

{o(z) | x € LVar(p)} C V(7)) U Val, and =pq (7 = o).

We now show {u' | u € [ s[n] [,u —lep v'} = [ t[n] ]

(C) Suppose u € [ s[r] |. Then, u = sy with v respecting .
Thus, Ea my and {y(z) | x € V(m)} C Val. Also, by

s[7] =rule,p t[m], we have ul, = s|,v = (€o)y. Since

{o(z) | x € LVar(p)} CV(r)UVal and {v(x) | x € V(m)} C Val, we have
{v(c(z)) | z € LVar(p)} C Val. By Eam (7 = o), we have Epq (7 = o), and
hence by = ¢ 77y, we have =04 poy. T hus,

u = sy = Cloly = Cy[loy] —le Cy[rony]. Let u' = Cy[rov].
Since t = Clroly, we have v’ = Cy[roy] = Clro]y = tv. Since v
respects , it follows u' € [ ¢[x] |.
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(2)
Suppose w € [ t[x] |. Then, w = td with § respecting 7. Thus, Suppose
=m o and {6(z) |z € V(m)} C Val. Also, by s[m] — e p t[r], > 7 is satisfiable, p € Pos(s), p € R,
we have wl, = t[,6 = (ro)d. » for any u € [ s[n] | there exists v’ such that u —, ) «/, and
Since {o(z) | x € LYVar(p)} € V(m) UVal and V() C LVar(p), > (o |ue [ slr] L u—ppu} =[] ]
we have {§(c(z)) |z € LVar(p)} C Val. By =x (7= ¢o), we o ’
have = (10 = @0 d), and hence by = 70, we have = @od. en, 5[] —re,p tr].
Also, w =16 = Clro]d = Cb[rod]. Take u = C5[fod]. Then, Proof. Let p: ¢ — r [¢] € R. By satisfiability, | s[n] | # 0. Thus,
u= Co[lod] —rylep Co[rod] = w. _ there exists u € | s[r| | and «/, such that uw —,, «’. Thus,
Since s = C[lo],, we have u = Co[lod] = C[lo]y = s7. Since v w = Clloly, o' = Clroly, {o(z) | = € LVar(p)} C Val, and
respects , it follows u € [ s[n] |. O 0. B
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By uw € [ s[n] |, u = sy for some =y such that 7 respects .

Thus, by u = sy and u = C[lo],, we know s = C[(5],, Cy = C
and (£6)y = lo 77?7 ._If { # { then we can not rewrite s[r]...
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Counterexample.

R ={p:f(0) =1}

Take s[r| = f(z)[x = 0] and ¢[x] = 1[x = 0]. Then,

[ s[7] | ={f(0)} and [ t[x] [ = {1}. Take p =e.
Then,

» 7 is satisfiablev’, p € Pos(s)v/, p € RV,
» for any u € [ s[n] | there exists v’ such that u —,, v’v/, and
> (o ue [ sl Ju—pp '} = [ tr] 1V

But we don't have f(z)[z = 0] — 1[z = 0].

s[r] —rule ] if

7 is satisfiable and ¢ = 7.

s=C[lo] and t = Clro] with p: £ — 1 [p] ER

Dom(o) = V(4,1 ¢)

{o() | = € LVar(p)} C V(r) U Val
( o)

vV V.V VY

Fm (m=¢

20/24

Value-free-pattern LCTRSs

A rewrite rule ¢ — r [p] has value-free-pattern if £ does not
contain value. An LCTRS R is value-free-pattern if so are all rules.

Lemma

For any rewrite rule p there exists a value-free-pattern rewrite rule
p' such that Vs, t. (s —, tiff s = t).

Proof. This is because for any p : Cvy, ..., v,] — 7] (with all
values vy, ..., v, in LHS indicated), one can take
p:Cley,. .. xn] = rlp Axy =vy Ao Ay = vy, which is
value-free-pattern. O

Thus, restricting rules to value-free-pattern is not a essential
restriction.
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Conjecture

Suppose
» R has value-free-pattern,
» 7 is satisfiable, p € Pos(s), p € R,
» for any u € [ s[n] | there exists v’ such that u —,, v/, and
> {u' Juels[r]],u—ppu}=[tr]]
Then, s[m] —=rylep t]7].

Proof. Let p: £ — r [¢] € R. By satisfiability, | s[n] | # 0. Thus,
there exists u € [ s[x] | and @/, such that u —,, «’. Thus,

u = C[lo]y, u' = C[rol,, {o(z) |2z € LVar(p)} C Val, and

Fam po.

By u € [ s[n] |, w = sy for some 7 such that v respects 7. W.l.o.g.
one can take w in such a way that y(z) ¢ Val for any x ¢ V(7).

Thus, by u = sy and u = Cl[lo],, we know C[lo], = s7. Since
p € Pos(s), we can take s = C[s],.

22/24

Thus Clto], = C[s'],y = Cy[s'7]p. Thus, C = Cv and fo = 5.
Then, since ¢ does not contain values, one can let s’ = ¢o’ for
some ¢’. Then, lo = s’y = Lo’ and o'(x) € V U Val for

z € LVar(p) and s = C[¢'] = C[to].

Let € LVar(p). By o(x) € Val and o(z) = v(o'(x)), we have
either o’(z) € V or o'(x) € Val.

In the former case, we can take o’(x) = 2’ for some 2/ € V(7),

because of the way we take u and v(¢'(x)) € Val.

Next, do we have = (7 = @o’)?7?

For this, we have to show that, for any valuation { on M, Epe 7
implies =aq¢ o'

Suppose =g ™. Then = €. Thus, we could take u(= s7v)
such that y(x) = {(z) for all z € V(7).

From = wo, maybe we get = po’y.(?) (Then, we have

Fame po’)

Currrently, | don't know the conjecture holds, or still there is a
further counterexample.
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Concluding Remarks
From perspective of interpreting LCTRSs in TRSs:
» interpetation of rewrite steps on terms seems to be
understood clearly.
» for interpetation of rewrite steps on constrained terms:

P it seems there is a natural interpretation
[-] : CnstrTerm — TermSet.

P equivalence relation ~ on CnstrTerm is mapped to the
identity relation on TermSet.

P binary relation —¢,c on CnstrTerm relates to a relation on
TermSet but not so clear. Also, characterization of relation on
TermSet in terms of Cnstr’Term is not clear.

P binary relation — e on Cnstr’Term relates to a relation on
TermSet but not so clear. Also, characterization of relation on
TermSet in terms of Cnstr’Term is unclear.

» Some related questions

» What is the expressivity of CnstrTerm? l.e., when a term set
is expressed by a constrained term?

P> Is - ~ - decidable? (YES = [Kojima & Nishida, PRO2023]) More
generally, what kinds of predicates on TermSet is
computationally solved by means of CnstrTerm?
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