Interpreting LCTRSs in TRSs

Takahito Aoto
(partly joint work with Koki Hayashi \& Kanta Takahata)

Niigata University
ARI meeting, February 20-23, 2024, Kira Yosida

Logically Constrained Term Rewriting Systems (LCTRSs)

[Kop \& Nishida,FroCoS 2013]

$$
\mathcal{R}=\left\{\begin{array}{ll}
\operatorname{sum}(x) & \rightarrow 0[0 \geq x] \\
\operatorname{sum}(x) & \rightarrow x+\operatorname{sum}(x+-1)[\neg(0 \geq x)]
\end{array}\right\}
$$

- (many-sorted) theory signature $\Sigma_{\text {th }}=\left\langle\mathcal{S}_{\text {th }}, \mathcal{F}_{\text {th }}\right\rangle$ and term signature $\Sigma_{\text {te }}=\left\langle\mathcal{S}_{\text {te }}, \mathcal{F}_{\text {te }}\right\rangle$
- for $f: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau_{0} \in \mathcal{F}_{\text {th }}$, we ask $\tau_{0}, \ldots, \tau_{n} \in \mathcal{S}_{\text {th }}$.
- An underlying model (background theory) \mathcal{M} over $\Sigma_{\text {th }}$ is given, e.g. $\mathbb{B}, \mathbb{Z}, \wedge,+, \ldots$
- All elements of carrier set $|\mathcal{M}|$ are supposed to exist in $\Sigma_{\text {th }}$ as contants (which we call values), e.g. true, false, $0,-256, \ldots$
- A rule has form $\ell \rightarrow r[\varphi]$, where φ is a $\Sigma_{\text {th }}$-term of type Bool and $\operatorname{root}(\ell) \in \mathcal{F}_{\text {te }}$.
- Calculations by operations in \mathcal{M} is embodied: e.g.

$$
1+1 \rightarrow 2, \quad 12 \geq 10 \rightarrow \text { true }, \quad \text { true } \wedge \text { false } \rightarrow \text { false, } \ldots
$$

Rewrite Steps of LCTRSs (1)

$$
\mathcal{R}=\left\{\begin{array}{lll}
\operatorname{sum}(x) & \rightarrow 0 & {[0 \geq x]} \\
\operatorname{sum}(x) & \rightarrow x+\operatorname{sum}(x+-1) & {[\neg(0 \geq x)]}
\end{array}\right\}
$$

(over the integer arithmetic)

- Rule Step $\left(\rightarrow_{\text {rule }}\right)$: rewriting using given rewrite rules
- The rule $\ell \rightarrow r[\varphi]$ is applied when the constraint φ is satisfied. (Evaluation of constraint is a meta-calculation.)
- Calculation Step $\left(\rightarrow_{\text {calc }}\right)$: rewriting induced by the underlying model
- Each calculation step is applied for the term $f\left(v_{1}, \ldots, v_{n}\right)$ with $f \in \mathcal{F}_{\text {th }}$ and values v_{1}, \ldots, v_{n}.

$$
\begin{aligned}
\underline{\operatorname{sum}(1)} & \rightarrow_{\text {rule }} 1+\operatorname{sum}(1+-1) \\
& \rightarrow_{\text {calc }} 1+\operatorname{sum}(0) \\
& \rightarrow_{\text {rule }} 1+\overline{0} \\
& \rightarrow_{\text {calc }} 1
\end{aligned}
$$

Rewrite Steps of LCTRSs (2)

$$
\mathcal{R}=\left\{\begin{array}{lll}
\operatorname{minus}(x, y) & \rightarrow z \\
\operatorname{inc}(x) & \rightarrow & x+1 \\
\Omega(x) & \rightarrow \Omega(y)
\end{array} \quad[x=y+z] \quad\right\}
$$

- Do we have: minus $(5,2) \rightarrow_{\text {rule }} 3$?
- Do we have: minus $(5,2) \rightarrow_{\text {rule }} 5-2$?
... NO
- Do we have: minus $(x, y) \rightarrow_{\text {rule }} x-y$?
... NO
- Do we have: $\operatorname{minus}(x+1,1) \rightarrow_{\text {rule }} x$? ... NO
- Do we have: $\operatorname{inc}(x-1) \rightarrow_{\text {rule }}(x-1)+1$?
... YES
- Do we have: $\Omega(1) \rightarrow_{\text {rule }} \Omega(2)$? ... YES
- Do we have: $\Omega(x+1) \rightarrow_{\text {rule }} \Omega(x+2)$? ... NO
- Do we have: $\Omega(x+1) \rightarrow_{\text {rule }} \Omega(2)$? ... YES

Instantiation of logical variables are restricted to values.

$$
\mathcal{L} \operatorname{Var}(\ell \rightarrow r[\varphi])=\mathcal{V}(\varphi) \cup(\mathcal{V}(r) \backslash \mathcal{V}(\ell))
$$

Definition of Rewrite Steps

Suppose that signature $\Sigma_{\text {th }}=\left\langle\mathcal{S}_{\text {th }}, \mathcal{F}_{\text {th }}\right\rangle, \Sigma_{\text {te }}=\left\langle\mathcal{S}_{\text {te }}, \mathcal{F}_{\text {te }}\right\rangle$, $\Sigma_{\text {th }}$-structure \mathcal{M}, and rewrite rules \mathcal{R} are given.

1. (rule step)

$$
s \rightarrow_{\text {rule }} t
$$

if $s=C[\ell \sigma]$ and $t=C[r \sigma]$ for some context C, rewrite rule $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$, and substitution σ such that

- $\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} a r(\rho)\} \subseteq \mathcal{V}$ al, and
- $=_{\mathcal{M}} \varphi \sigma$ (or equivalently, $\models_{\mathcal{M}, \sigma} \varphi$)

2. (calculation step)

$$
s \rightarrow_{\text {calc }} t
$$

if $s=C\left[f\left(v_{1}, \ldots, v_{n}\right)\right]$ and $t=C\left[v_{0}\right]$ for some context C, $f \in \mathcal{F}_{\text {th }}, v_{0}, v_{1}, \ldots, v_{n} \in \mathcal{V}$ al such that $f^{\mathcal{M}}\left(v_{1}, \ldots, v_{n}\right)=v_{0}$.

Interpreting LCTRSs by TRSs (1)

[Mitterwallner et al., IWC 2023]

- Simulation of calculation steps
\Rightarrow provide all underlying operations of \mathcal{M} as rewrite rules.

$$
\begin{aligned}
\operatorname{rs}(\mathcal{M})=\left\{f\left(v_{1}, \ldots, v_{n}\right)\right. & \rightarrow v_{0} \\
\mid & f \in \mathcal{F}_{\text {th }}, v_{0}, \ldots, v_{n} \in \mathcal{V} a l, \\
& \left.f^{\mathcal{M}}\left(v_{1}, \ldots, v_{n}\right)=v_{0}\right\}
\end{aligned}
$$

Proposition

$s \rightarrow_{\text {calc }} t$ (in LCTRSs) iff $s \rightarrow_{\mathrm{rs}(\mathcal{M})} t$ (in TRSs).
Proof. (\Rightarrow) Let $s=C\left[f\left(v_{1}, \ldots, v_{n}\right)\right], t=C\left[v_{0}\right]$ with $f \in \mathcal{F}_{\text {th }}, v_{0}, \ldots, v_{n}$ $\in \mathcal{V}$ al such that $f^{\mathcal{M}}\left(v_{1}, \ldots, v_{n}\right)=v_{0}$. Then $f\left(v_{1}, \ldots, v_{n}\right) \rightarrow v_{0} \in \operatorname{rs}(\mathcal{M})$. Thus, $s=C\left[f\left(v_{1}, \ldots, v_{n}\right)\right] \rightarrow_{\mathrm{rs}(\mathcal{M})} C\left[v_{0}\right]=t$.
(\Leftarrow) Let $s=C[\ell \sigma], t=C[r \sigma]$ with $\ell \rightarrow r \in \operatorname{rules}(\mathcal{M})$. Then, by definition $\ell=f\left(v_{1}, \ldots, v_{n}\right)$ and $r=v_{0}$ for some $f \in \mathcal{F}_{\text {th }}, v_{0}, \ldots, v_{n} \in$ \mathcal{V} al such that $f^{\mathcal{M}}\left(v_{1}, \ldots, v_{n}\right)=v_{0}$. Thus, $s=C[\ell]=C\left[f\left(v_{1}, \ldots, v_{n}\right)\right]$ and $t=C[r]=C\left[v_{0}\right]$. By $f^{\mathcal{M}}\left(v_{1}, \ldots, v_{n}\right)=v_{0}$, we have $s \rightarrow_{\text {calc }} t$.

Interpreting LCTRSs by TRSs (2)

[Mitterwallner et al., IWC 2023]

- Simulation of rule steps
\Rightarrow provide all instantiation of rules by $\sigma: \mathcal{L V} \operatorname{Var}(\rho) \rightarrow \mathcal{V} a l$ satisfying $\models_{\mathcal{M}} \varphi \sigma$.

$$
\overline{\mathcal{R}}=\bigcup_{\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}}\left\{l \sigma \rightarrow r \sigma \mid \sigma: \mathcal{L} \mathcal{V} a r(\rho) \rightarrow \mathcal{V} a l, \models_{\mathcal{M}} \varphi \sigma\right\}
$$

Proposition

$s \rightarrow_{\text {rule }} t$ (in LCTRSs) iff $s \rightarrow_{\overline{\mathcal{R}}} t$ (in TRSs).
Proof. (\Rightarrow) Let $s=C[\ell \sigma], t=C[r \sigma]$ with $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$. Take $\sigma_{\mathrm{v}}=$ $\sigma \downharpoonright(\mathcal{L V} \operatorname{Var}(\rho)), \sigma^{\prime}=\sigma \downharpoonright(\mathcal{L} \mathcal{V} a r(\rho))^{\mathrm{c}}$. By $\{\sigma(x) \mid x \in \mathcal{L} \operatorname{Var}(\rho)\} \subseteq \mathcal{V} a l$, we have $\sigma_{\mathrm{v}}: \mathcal{L} \operatorname{Var}(\rho) \rightarrow \mathcal{V}$ al, $\sigma=\sigma^{\prime} \circ \sigma_{\mathrm{v}}, \models_{\mathcal{M}} \varphi \sigma_{\mathrm{v}}$; so, $l \sigma_{\mathrm{v}} \rightarrow r \sigma_{\mathrm{v}} \in \overline{\mathcal{R}}$. Thus, $s=C[\ell \sigma]=C\left[\left(\ell \sigma_{\mathrm{v}}\right) \sigma^{\prime}\right] \rightarrow_{\overline{\mathcal{R}}} C\left[\left(r \sigma_{\mathrm{v}}\right) \sigma^{\prime}\right]=C[r \sigma]=t$. (\Leftarrow) Let $s=C[(\ell \sigma) \theta] t=C[(r \sigma) \theta]$ with $\ell \sigma \rightarrow r \sigma \in \overline{\mathcal{R}}$ and $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$. As $\sigma: \mathcal{L V} \operatorname{Var}(\rho) \rightarrow \mathcal{V}$ al, $\mathcal{V}(\ell \sigma, r \sigma) \subseteq(\mathcal{L V} \operatorname{Var}(\rho))^{c}$, take $\theta^{\prime}=\theta\left\lfloor(\mathcal{L} \operatorname{Var}(\rho))^{\mathrm{c}}\right.$, and we have $\ell\left(\sigma \uplus \theta^{\prime}\right)=(\ell \sigma) \theta^{\prime}=(\ell \sigma) \theta$ and $r\left(\sigma \uplus \theta^{\prime}\right)=(r \sigma) \theta^{\prime}=(r \sigma) \theta$. By $\mathcal{V}(\varphi) \subseteq \mathcal{L} \mathcal{V} \operatorname{ar}(\rho),=_{\mathcal{M}} \varphi\left(\sigma \uplus \theta^{\prime}\right)$. So $s=C\left[\ell\left(\sigma \uplus \theta^{\prime}\right)\right] \rightarrow_{\text {rule }} C\left[r\left(\sigma \uplus \theta^{\prime}\right)\right]=t$.

Example.

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{llll}
\operatorname{minus}(x, y) & \rightarrow & z & {[x=y+z]} \\
\operatorname{inc}(x) & \rightarrow & x+1 & \\
\Omega(x) & \rightarrow & \Omega(y)
\end{array}\right\} \\
& \overline{\mathcal{R}}=\left\{\begin{array}{lllll}
\operatorname{minus}(0,0) & \rightarrow 0, & \operatorname{minus}(1,0) & \rightarrow & 1, \\
\operatorname{minus}(0,1) & \rightarrow-1, & \cdots \cdots \\
\operatorname{inc}(x) & \rightarrow x+1, & & & \\
\Omega(x) & \rightarrow \Omega(0), & \Omega(x) & \rightarrow & \Omega(1), \\
\Omega(x) & \rightarrow \Omega(-1), & \cdots \cdots
\end{array}\right. \\
& \begin{array}{lll}
\operatorname{minus}(5,2) & \rightarrow_{\text {rule }} & 3 \\
\operatorname{inc}(x-1) & \rightarrow_{\text {rule }} & (x-1)+1 \\
\Omega(1) & \rightarrow_{\text {rule }} & \Omega(2) \\
\Omega(x+1) & \rightarrow_{\text {rule }} & \Omega(2)
\end{array} \\
& \begin{array}{lll}
\operatorname{minus}(5,2) & \text { A }_{\text {rule }} & 5-2 \\
\operatorname{minus}(x, y) & \text { A }_{\text {rule }} & x-y \\
\text { minus }(x+1,1) & \text { A }_{\text {rule }} & x \\
\Omega(x+1) & \text { A rule } & \Omega(x+2)
\end{array}
\end{aligned}
$$

Rewriting on Contrained Terms

[Kop \& Nishida,FroCoS 2013]
Three ingredients: $s[\pi] \sim t[\psi], s[\pi] \rightarrow_{\text {calc }} t[\psi]$, and $s[\pi] \rightarrow_{\text {rule }} t[\psi]$.
1.

$$
s[\pi] \sim t[\psi]
$$

if

- $\forall \underline{\gamma}$: respecting $s[\pi], \exists \delta$: respecting $t[\psi]$ such that $s \gamma=t \delta$.
- $\forall \delta$: respecting $t[\psi], \exists \underline{\gamma \text { : respecting } s[\pi]}$ such that $t \delta=s \gamma$.

$$
\begin{aligned}
& \gamma \text { respects } s[\pi] \Leftrightarrow\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V} \text { al and } \models_{\mathcal{M}} \pi \gamma \\
& \delta \text { respects } t[\psi] \Leftrightarrow\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V} \text { al and } \models_{\mathcal{M}} \psi \delta
\end{aligned}
$$

2.

$$
s[\pi] \rightarrow_{\text {calc }} t[\psi]
$$

if

- $s=C\left[f\left(s_{1}, \ldots, s_{n}\right)\right]$ with $f \in \mathcal{F}_{\text {th }}, s_{1}, \ldots, s_{n} \in \mathcal{V}(\pi) \cup \mathcal{V} a l$,
- $t=C[x]$ with x : fresh variable
- $\psi=\left(\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right)$

3.

$$
s[\pi] \rightarrow_{\text {rule }} t[\psi]
$$

if

- π is satisfiable and $\psi=\pi$.
- $s=C[\ell \sigma]$ and $t=C[r \sigma]$ with $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$
- $\operatorname{Dom}(\sigma)=\mathcal{V}(\ell, r, \varphi)$
- $\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} a r(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}$ al
- $=\mathcal{M}(\pi \Rightarrow \varphi \sigma)$

How can we interpret rewriting on contrained terms?

Interpreting Contrained Terms

Natural(?) idea:

$$
\begin{aligned}
\llbracket s[\pi] \rrbracket & =\{s \gamma|\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V} a l,|=\mathcal{M} \pi \gamma\} \\
& =\{s \gamma \mid \gamma \text { respects } s[\pi]\})
\end{aligned}
$$

Example.

$$
\begin{aligned}
\llbracket x+y[x \geq 0] \rrbracket & =\{0+y, 1+(y+1), 1+(x+y), \ldots\} \\
& =\left\{n+t \mid n \in \mathbb{Z}, t \in \mathrm{~T}(\mathcal{F}, \mathcal{V})^{\operatorname{lnt}}\right\}
\end{aligned}
$$

Theorem

$s[\pi] \sim t[\psi]$ iff $\llbracket s[\pi] \rrbracket=\llbracket t[\psi] \rrbracket$.
Proof. It suffices to show that the following two are equivalent: 1. $\forall \gamma$: respecting $s[\pi], \exists \delta$: respecting $t[\psi]$ such that $s \gamma=t \delta$ 2. $\llbracket s[\pi] \rrbracket \subseteq \llbracket t[\psi] \rrbracket$
$(1 \Rightarrow 2)$ Suppose $u \in \llbracket s[\pi] \rrbracket$. Then $u=s \gamma$ for some γ that respects $s[\pi]$. Then, there exists δ respecting $t[\psi]$ such that $s \gamma=t \delta$. Thus, there exists δ respecting $t[\psi]$ such that $u=t \delta$. Hence, $u \in \llbracket t[\psi] \rrbracket$.
$(2 \Rightarrow 1)$ Suppose that γ respects $s[\pi]$. Then $s \gamma \in \llbracket s[\pi] \rrbracket$. Thus, $s \gamma \in \llbracket t[\psi] \rrbracket$. Then, there exists δ respecting $t[\psi]$ such that $s \delta=t \delta$.

Interpreting Calculation Steps on Constrained Terms

Lemma(?)

$s[\pi] \rightarrow_{\text {calc }, p} t[\psi]$ iff $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, p} u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.
Proof. (\Rightarrow) Suppose $s=C\left[f\left(s_{1}, \ldots, s_{n}\right)\right]_{p}$ with $f \in \mathcal{F}_{\text {th }}$ $s_{1}, \ldots, s_{n} \in \mathcal{V}(\pi) \cup \mathcal{V} a l$, and $t=C[x]_{p}$ with x : fresh variable, and $\psi=\left(\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right)$.
We now show $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, p} u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.
(\subseteq) Let $u \in \llbracket s[\pi] \rrbracket\}$. Then, $u=s \gamma$ for some γ respecting π. We have $\left.u\right|_{p}=\left.(s \gamma)\right|_{p}=\left(\left.s\right|_{p}\right) \gamma=f\left(s_{1}, \ldots, s_{n}\right) \gamma=f\left(s_{1} \gamma, \ldots, s_{n} \gamma\right)$.
Since $s_{1}, \ldots, s_{n} \in \mathcal{V}(\pi) \cup \mathcal{V} a l$, and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V} a l$, $s_{1} \gamma, \ldots, s_{n} \gamma \in \mathcal{V}$ al. Thus, $u \rightarrow_{\text {calc }, p} u[v]_{p}=u^{\prime}$ with $v=f^{\mathcal{M}}\left(s_{1} \gamma, \ldots, s_{n} \gamma\right)$.
Take δ such that $\delta(x)=v$ and $\delta(y)=\gamma(y)$ for $y \neq x$. Then $t \delta=C[x]_{p} \delta=C \gamma[v]_{p}=s \gamma[v] p=u[v]_{p}$. Also, by $x \notin \mathcal{V}(\psi)$, we have $\pi \gamma=\pi \delta$. Furthermore,
$\delta(x)=v=f^{\mathcal{M}}\left(\llbracket s_{1} \delta \rrbracket_{\mathcal{M}}, \ldots, \llbracket s_{n} \delta \rrbracket_{\mathcal{M}}\right)=\llbracket f\left(s_{1}, \ldots, s_{n}\right) \gamma \rrbracket_{\mathcal{M}}$.

Thus, $\models_{\mathcal{M}}\left(\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right) \delta$. Hence, δ respects $t[\psi]$ and $u^{\prime}=t \delta$. Hence, $u^{\prime} \in \llbracket t[\psi] \rrbracket$.
(\supseteq) Suppose $w \in \llbracket t[\psi] \rrbracket$. Then $w=t \delta$ for some δ respecting $t[\delta]$. Thus, $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V} a l$ and $\models \mathcal{M}^{\psi \delta}$. As $t=C[x]_{p}$ with x : fresh variable, $t \delta=C \delta[\delta(x)]_{p}$. We now show $u \rightarrow_{\text {rule }, p} w$ for some $u \in \llbracket s[\pi] \rrbracket$.
Firstly, as $\psi=\left(\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right)$, we have $\models_{\mathcal{M}} \pi \delta$ and $\mathcal{V}(\pi) \subseteq \mathcal{V}(\psi)$. Thus, by $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V}$ al, we have $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}$ al. Together with $\vDash \mathcal{M} \pi \delta$, we obtain that δ respects π.
Moreover, we have $=_{\mathcal{M}} \delta(x)=f\left(s_{1} \delta, \ldots, s_{n} \delta\right)$, i.e. $\delta(x)=$ $\llbracket \delta(x) \rrbracket_{\mathcal{M}}=f^{\mathcal{M}}\left(\llbracket s_{1} \delta \rrbracket_{\mathcal{M}}, \ldots, \llbracket s_{n} \delta \rrbracket_{\mathcal{M}}\right)=\llbracket f\left(s_{1}, \ldots, s_{n}\right) \delta \rrbracket_{\mathcal{M}}$.
Now, take $u=w\left[f\left(s_{1}, \ldots, s_{n}\right) \delta\right]_{p}$. Since $s_{1} \delta, \ldots, s_{n} \delta \in \mathcal{V} a l$, and $f^{\mathcal{M}}\left(s_{1} \delta, \ldots, s_{n} \delta\right)=\llbracket f\left(s_{1}, \ldots, s_{n}\right) \delta \rrbracket_{\mathcal{M}}=\left.\llbracket u\right|_{p} \rrbracket_{\mathcal{M}}$, we have $u \rightarrow_{\text {rule }, p} u[\delta(x)]=w[\delta(x)]=w$.
Then, $u=w\left[f\left(s_{1}, \ldots, s_{n}\right) \delta\right]_{p}=t \delta\left[f\left(s_{1}, \ldots, s_{n}\right) \delta\right]_{p}=$ $t\left[f\left(s_{1}, \ldots, s_{n}\right)\right]_{p} \delta=C\left[f\left(s_{1}, \ldots, s_{n}\right)\right]_{p} \delta=s \delta$. Hence, $u=s \delta$ and δ respects π. Thus, $u \in \llbracket s[\pi] \rrbracket$.
$(\Leftarrow$?)
Counterexample (1).
Let $s[\pi]=+(x, x)[x=0 \vee x=1]$ and $t[\psi]=y[y=0 \vee y=2]$.
Then, $\llbracket s[\pi] \rrbracket=\{+(0,0),+(1,1)\}$.
Thus, $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, \epsilon} u^{\prime}\right\}=\{0,2\}=\llbracket t[\psi] \rrbracket$.
But $s[\pi] \not \nrightarrow c a l c, \epsilon t[\psi]$.
Here, we only have

$$
\begin{array}{rll}
s[\pi] & \rightarrow_{\text {calc }} & y[(x=0 \vee x=1) \wedge y=+(x, x)] \\
& \sim & y[y=0 \vee y=2]
\end{array}
$$

Counterexample (2).
Let $s[\pi]=+(x, x)[x \neq x]$ and $t[\psi]=+(x, y)[x \neq x \wedge y \neq y]$.
Then, $\llbracket s[\pi] \rrbracket=\llbracket t[\psi] \rrbracket=\emptyset$, and thus,
$\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, \epsilon} u^{\prime}\right\}=\emptyset=\llbracket t[\psi] \rrbracket$.
But $s[\pi] \not{\nrightarrow \mathrm{calc}^{\mathrm{c}, \epsilon}} t[\psi]$.

Suppose

- π is satisfiable, $p \in \operatorname{Pos}(s)$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u^{\prime} such that $u \rightarrow_{\text {calc, } p} u^{\prime}$, and
- $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, p} u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.

Then, $s[\pi] \rightarrow_{\text {calc }, p} \circ \sim t[\psi]$.
Proof. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u^{\prime}, such that $u \rightarrow_{\text {calc, } p} u^{\prime}$. Thus, $u=C\left[f\left(u_{1}, \ldots, u_{n}\right)\right]_{p}$ for some $f \in \mathcal{F}_{\text {te }}$, and $u_{1}, \ldots, u_{n} \in \mathcal{V}$ al.
By $u \in \llbracket s[\pi] \rrbracket, u=s \gamma$ for some γ such that γ respects π. Thus, $s=\hat{C}\left[f\left(s_{1}, \ldots, s_{n}\right)\right]_{p}$ with $\hat{C} \gamma=C$ and $s_{i} \gamma=u_{i}(1 \leq i \leq n)$. Suppose $s_{i} \notin \mathcal{V}$ al. If $s_{i} \notin \mathcal{V}(\pi)$, then one can modify γ such as $s_{i} \gamma \notin \mathcal{V}$ al, while keep respecting π. This contradicts our second condition. Thus, $s_{i} \in \mathcal{V}(\pi) \cup \mathcal{V}$ al for $i=1, \ldots, n$.
Thus, $s[\pi] \rightarrow_{\text {calc }, p} s[x]_{p}\left[\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right]$. It remains to show $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {calc }, p} u^{\prime}\right\}=\llbracket s[x]_{p}\left[\pi \wedge x=f\left(s_{1}, \ldots, s_{n}\right)\right] \rrbracket$. But this follows as $\left.s\right|_{p}=f\left(s_{1}, \ldots, s_{n}\right)$.

Interpreting Calculation Steps on Constrained Terms

So, we have

Theorem

If $s[\pi] \rightarrow_{\text {calc }, p} t[\psi]$, then
$\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathrm{rs}(\mathcal{M}), p} u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.

Theorem

Suppose

- π is satisfiable, $p \in \operatorname{Pos}(s)$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u^{\prime} such that $u \rightarrow_{\mathrm{rs}(\mathcal{M}), p} u^{\prime}$, and
- $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathrm{rs}(\mathcal{M}), p} u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.

Then, $s[\pi] \rightarrow_{\text {calc }, p} \circ \sim t[\psi]$.

What is the precise correspondence? Bisimilarity? Functor?

Interpreting Rule Steps on Constrained Terms ...

At this point, I remind that [Kop \& Nishida,FroCoS 2013] already shows

Proposition [Kop \& Nishida, FroCoS 2013]

If $s[\pi] \rightarrow t[\psi]$ then for any γ that respect π there exists δ that respect ψ such that $s \gamma \rightarrow t \psi$.

In our terminology, this is equivalent to:

Proposition

$$
\text { If } s[\pi] \rightarrow t[\psi] \text { then }\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow u^{\prime}\right\} \subseteq \llbracket t[\psi] \rrbracket \text {. }
$$

The following our version is slightly stronger than this (?).

Conjecture

If $s[\pi] \rightarrow t[\psi]$ then $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow u^{\prime}\right\}=\llbracket t[\psi] \rrbracket$.

Interpreting Rule Steps on Constrained Terms

Lemma

If $s[\pi] \rightarrow_{\text {rule }, p} t[\pi]$, then $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\text {rule }, p} u^{\prime}\right\}=\llbracket t[\pi] \rrbracket$.
Proof. Suppose π is satisfiable, $s=C[\ell \sigma]_{p}$ and $t=C[r \sigma]_{p}$, with $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$, and $\operatorname{Dom}(\sigma)=\mathcal{V}(\ell, r, \varphi)$, and $\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} a r(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}$ al, and $\models_{\mathcal{M}}(\pi \Rightarrow \varphi \sigma)$.
We now show $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket\right.$, $\left.u \rightarrow_{\text {rule }, p} u^{\prime}\right\}=\llbracket t[\pi] \rrbracket$.
(\subseteq) Suppose $u \in \llbracket s[\pi] \rrbracket$. Then, $u=s \gamma$ with γ respecting π.
Thus, $\models_{\mathcal{M}} \pi \gamma$ and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}$ al. Also, by
$s[\pi] \rightarrow_{\text {rule, } p} t[\pi]$, we have $\left.u\right|_{p}=\left.s\right|_{p} \gamma=(\ell \sigma) \gamma$. Since $\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} \operatorname{ar}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}$ al and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}$ al, we have $\{\gamma(\sigma(x)) \mid x \in \mathcal{L} \operatorname{Var}(\rho)\} \subseteq \mathcal{V}$ al. By $\models_{\mathcal{M}}(\pi \Rightarrow \varphi \sigma)$, we have $\models_{\mathcal{M}}(\pi \gamma \Rightarrow \varphi \sigma \gamma)$, and hence by $\models \mathcal{M}^{\pi \gamma}$, we have $\models \mathcal{M}^{\varphi} \sigma \gamma$. Thus,
$u=s \gamma=C[\ell \sigma] \gamma=C \gamma[\ell \sigma \gamma] \rightarrow_{\text {rule }} C \gamma[r \sigma \gamma]$. Let $u^{\prime}=C \gamma[r \sigma \gamma]$.
Since $t=C[r \sigma]_{p}$, we have $u^{\prime}=C \gamma[r \sigma \gamma]=C[r \sigma] \gamma=t \gamma$. Since γ respects π, it follows $u^{\prime} \in \llbracket t[\pi] \rrbracket$.
(き)
Suppose $w \in \llbracket t[\pi] \rrbracket$. Then, $w=t \delta$ with δ respecting π. Thus, $\models_{\mathcal{M}} \pi \delta$ and $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}$ al. Also, by $s[\pi] \rightarrow_{\text {rule }, p} t[\pi]$, we have $\left.w\right|_{p}=\left.t\right|_{p} \delta=(r \sigma) \delta$.
Since $\{\sigma(x) \mid x \in \mathcal{L} \operatorname{Var}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}$ al and $\mathcal{V}(\pi) \subseteq \mathcal{L} \operatorname{V} \operatorname{Var}(\rho)$, we have $\{\delta(\sigma(x)) \mid x \in \mathcal{L V} \operatorname{ar}(\rho)\} \subseteq \mathcal{V}$ al. By $\models \mathcal{M}(\pi \Rightarrow \varphi \sigma)$, we
 Also, $w=t \delta=C[r \sigma] \delta=C \delta[r \sigma \delta]$. Take $u=C \delta[\ell \sigma \delta]$. Then, $u=C \delta[\ell \sigma \delta] \rightarrow_{\text {rule }, p} C \delta[r \sigma \delta]=w$.
Since $s=C[\ell \sigma]_{p}$, we have $u=C \delta[\ell \sigma \delta]=C[\ell \sigma] \gamma=s \gamma$. Since γ respects π, it follows $u \in \llbracket s[\pi] \rrbracket$.

Conjecture

Suppose

- π is satisfiable, $p \in \operatorname{Pos}(s), \rho \in \mathcal{R}$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u^{\prime} such that $u \rightarrow_{\rho, p} u^{\prime}$, and
- $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\rho, p} u^{\prime}\right\}=\llbracket t[\pi] \rrbracket$.

Then, $s[\pi] \rightarrow_{\text {rule }, p} t[\pi]$.
Proof. Let $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u^{\prime}, such that $u \rightarrow_{\rho, p} u^{\prime}$. Thus, $u=C[\ell \sigma]_{p}, u^{\prime}=C[r \sigma]_{p},\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} a r(\rho)\} \subseteq \mathcal{V}$ al, and $\models_{\mathcal{M}} \varphi \sigma$.
By $u \in \llbracket s[\pi] \rrbracket, u=s \gamma$ for some γ such that γ respects π.
Thus, by $u=s \gamma$ and $u=C[\ell \sigma]_{p}$, we know $s=\hat{C}[\hat{\ell} \hat{\sigma}]_{p}, \hat{C} \gamma=C$ and $(\hat{\ell} \hat{\sigma}) \gamma=\ell \sigma$??? ...If $\hat{\ell} \neq \ell$ then we can not rewrite $s[\pi] \ldots$

Counterexample.

$$
\mathcal{R}=\{\rho: f(0) \rightarrow 1\}
$$

Take $s[\pi]=\mathrm{f}(x)[x=0]$ and $t[\pi]=1[x=0]$. Then, $\llbracket s[\pi] \rrbracket=\{\mathrm{f}(0)\}$ and $\llbracket t[\pi] \rrbracket=\{1\}$. Take $p=\epsilon$.
Then,

- π is satisfiable $\checkmark, p \in \operatorname{Pos}(s) \checkmark, \rho \in \mathcal{R} \checkmark$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u^{\prime} such that $u \rightarrow_{\rho, p} u^{\prime} \checkmark$, and
- $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\rho, p} u^{\prime}\right\}=\llbracket t[\pi] \rrbracket \checkmark$.

But we don't have $\mathrm{f}(x)[x=0] \rightarrow 1[x=0]$.
$s[\pi] \rightarrow_{\text {rule }} t[\psi]$ if

- π is satisfiable and $\psi=\pi$.
- $s=C[\ell \sigma]$ and $t=C[r \sigma]$ with $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$
- $\operatorname{Dom}(\sigma)=\mathcal{V}(\ell, r, \varphi)$
- $\{\sigma(x) \mid x \in \mathcal{L} \operatorname{Var}(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}$ al
- $\models_{\mathcal{M}}(\pi \Rightarrow \varphi \sigma)$

Value-free-pattern LCTRSs

Definition

A rewrite rule $\ell \rightarrow r[\varphi]$ has value-free-pattern if ℓ does not contain value. An LCTRS \mathcal{R} is value-free-pattern if so are all rules.

Lemma

For any rewrite rule ρ there exists a value-free-pattern rewrite rule ρ^{\prime} such that $\forall s, t$. $\left(s \rightarrow_{\rho} t\right.$ iff $\left.s \rightarrow_{\rho^{\prime}} t\right)$.

Proof. This is because for any $\rho: C\left[v_{1}, \ldots, v_{n}\right] \rightarrow r[\varphi]$ (with all values v_{1}, \ldots, v_{n} in LHS indicated), one can take $\rho^{\prime}: C\left[x_{1}, \ldots, x_{n}\right] \rightarrow r\left[\varphi \wedge x_{1}=v_{1} \wedge \cdots \wedge x_{n}=v_{n}\right]$, which is value-free-pattern.

Thus, restricting rules to value-free-pattern is not a essential restriction.

Conjecture

Suppose

- \mathcal{R} has value-free-pattern,
- π is satisfiable, $p \in \operatorname{Pos}(s), \rho \in \mathcal{R}$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u^{\prime} such that $u \rightarrow_{\rho, p} u^{\prime}$, and
- $\left\{u^{\prime} \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\rho, p} u^{\prime}\right\}=\llbracket t[\pi] \rrbracket$.

Then, $s[\pi] \rightarrow_{\text {rule }, p} t[\pi]$.
Proof. Let $\rho: \ell \rightarrow r[\varphi] \in \mathcal{R}$. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u^{\prime}, such that $u \rightarrow_{\rho, p} u^{\prime}$. Thus, $u=C[\ell \sigma]_{p}, u^{\prime}=C[r \sigma]_{p},\{\sigma(x) \mid x \in \mathcal{L} \mathcal{V} a r(\rho)\} \subseteq \mathcal{V}$ al, and $=_{\mathcal{M}} \varphi \sigma$. By $u \in \llbracket s[\pi] \rrbracket, u=s \gamma$ for some γ such that γ respects π. W.I.o.g. one can take u in such a way that $\gamma(x) \notin \mathcal{V}$ al for any $x \notin \mathcal{V}(\pi)$.

Thus, by $u=s \gamma$ and $u=C[\ell \sigma]_{p}$, we know $C[\ell \sigma]_{p}=s \gamma$. Since $p \in \operatorname{Pos}(s)$, we can take $s=\hat{C}\left[s^{\prime}\right]_{p}$.

Thus $C[\ell \sigma]_{p}=\hat{C}\left[s^{\prime}\right]_{p} \gamma=\hat{C} \gamma\left[s^{\prime} \gamma\right]_{p}$. Thus, $C=\hat{C} \gamma$ and $\ell \sigma=s^{\prime} \gamma$. Then, since ℓ does not contain values, one can let $s^{\prime}=\ell \sigma^{\prime}$ for some σ^{\prime}. Then, $\ell \sigma=s^{\prime} \gamma=\ell \sigma^{\prime} \gamma$ and $\sigma^{\prime}(x) \in \mathcal{V} \cup \mathcal{V} a l$ for $x \in \mathcal{L} \mathcal{V}$ ar (ρ) and $s=\hat{C}\left[s^{\prime}\right]=\hat{C}\left[\ell \sigma^{\prime}\right]$.
Let $x \in \mathcal{L} \mathcal{V a r}(\rho)$. By $\sigma(x) \in \mathcal{V}$ al and $\sigma(x)=\gamma\left(\sigma^{\prime}(x)\right)$, we have either $\sigma^{\prime}(x) \in \mathcal{V}$ or $\sigma^{\prime}(x) \in \mathcal{V}$ al.
In the former case, we can take $\sigma^{\prime}(x)=x^{\prime}$ for some $x^{\prime} \in \mathcal{V}(\pi)$, because of the way we take u and $\gamma\left(\sigma^{\prime}(x)\right) \in \mathcal{V}$ al.

Next, do we have $\models_{\mathcal{M}}\left(\pi \Rightarrow \varphi \sigma^{\prime}\right)$???
For this, we have to show that, for any valuation ξ on $\mathcal{M}, \models_{\mathcal{M}, \xi} \pi$ implies $\models_{\mathcal{M}, \xi} \varphi \sigma^{\prime}$.
Suppose $\models_{\mathcal{M}, \xi} \pi$. Then $=_{\mathcal{M}} \pi \xi$. Thus, we could take $u(=s \gamma)$ such that $\gamma(x)=\xi(x)$ for all $x \in \mathcal{V}(\pi)$.
From $\models_{\mathcal{M}} \varphi \sigma$, maybe we get $\models_{\mathcal{M}} \varphi \sigma^{\prime} \gamma$.(?) (Then, we have $\models_{\mathcal{M}, \xi} \varphi \sigma^{\prime}$.)
Currrently, I don't know the conjecture holds, or still there is a further counterexample.

Concluding Remarks

From perspective of interpreting LCTRSs in TRSs:

- interpetation of rewrite steps on terms seems to be understood clearly.
- for interpetation of rewrite steps on constrained terms:
- it seems there is a natural interpretation $\llbracket \cdot \rrbracket:$ CnstrTerm \rightarrow TermSet.
- equivalence relation \sim on CnstrTerm is mapped to the identity relation on TermSet.
- binary relation $\rightarrow_{\text {calc }}$ on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet in terms of CnstrTerm is not clear.
- binary relation $\rightarrow_{\text {rule }}$ on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet in terms of CnstrTerm is unclear.
- Some related questions
- What is the expressivity of CnstrTerm? I.e., when a term set is expressed by a constrained term?
- Is • ~ decidable? (YES \Rightarrow [Kojima \& Nishida, PRO2023]) More generally, what kinds of predicates on TermSet is computationally solved by means of CnstrTerm?

