Interpreting LCTRSs in TRSs

Takahito Aoto (partly joint work with Koki Hayashi & Kanta Takahata)

Niigata University

ARI meeting, February 20-23, 2024, Kira Yosida

Logically Constrained Term Rewriting Systems (LCTRSs)

[Kop & Nishida, FroCoS 2013]

$$\mathcal{R} = \left\{ \begin{array}{ll} \operatorname{sum}(x) & \to & 0 \ [0 \geq x] \\ \operatorname{sum}(x) & \to & x + \operatorname{sum}(x + -1) \ [\neg (0 \geq x)] \end{array} \right\}$$

- (many-sorted) theory signature $\Sigma_{\sf th} = \langle \mathcal{S}_{\sf th}, \mathcal{F}_{\sf th} \rangle$ and term signature $\Sigma_{\sf te} = \langle \mathcal{S}_{\sf te}, \mathcal{F}_{\sf te} \rangle$
- for $f: \tau_1 \times \cdots \times \tau_n \to \tau_0 \in \mathcal{F}_{\mathsf{th}}$, we ask $\tau_0, \dots, \tau_n \in \mathcal{S}_{\mathsf{th}}$.
- An underlying model (background theory) \mathcal{M} over Σ_{th} is given, e.g. $\mathbb{B}, \mathbb{Z}, \wedge, +, \dots$
- All elements of carrier set $|\mathcal{M}|$ are supposed to exist in Σ_{th} as contants (which we call *values*), e.g. true, false, $0, -256, \ldots$
- ▶ A rule has form $\ell \to r$ $[\varphi]$, where φ is a Σ_{th} -term of type Bool and $\mathrm{root}(\ell) \in \mathcal{F}_{\mathsf{te}}$.
- Calculations by operations in \mathcal{M} is embodied: e.g. $1+1 \rightarrow 2$, $12 \geq 10 \rightarrow \text{true}$, true \land false \rightarrow false, ...

Rewrite Steps of LCTRSs (1)

$$\mathcal{R} = \left\{ \begin{array}{ll} \mathsf{sum}(x) & \to & 0 & [0 \ge x] \\ \mathsf{sum}(x) & \to & x + \mathsf{sum}(x + -1) & [\neg (0 \ge x)] \end{array} \right\}$$
 (over the integer arithmetic)

- ▶ Rule Step ($\rightarrow_{\text{rule}}$): rewriting using given rewrite rules
- ▶ The rule $\ell \to r$ $[\varphi]$ is applied when the constraint φ is satisfied. (Evaluation of constraint is a meta-calculation.)
- ► Calculation Step (\rightarrow_{calc}) : rewriting induced by the underlying model
- ▶ Each calculation step is applied for the term $f(v_1, ..., v_n)$ with $f \in \mathcal{F}_{\mathsf{th}}$ and values $v_1, ..., v_n$.

$$\begin{array}{c|c} \underline{\mathsf{sum}(1)} & \xrightarrow{\mathsf{rule}} & 1 + \underline{\mathsf{sum}(1+-1)} \\ & \xrightarrow{}_{\mathsf{calc}} & 1 + \underline{\mathsf{sum}(0)} \\ & \xrightarrow{}_{\mathsf{rule}} & \underline{1+0} \\ & \xrightarrow{}_{\mathsf{calc}} & 1 \end{array}$$

Rewrite Steps of LCTRSs (2)

$$\mathcal{R} = \left\{ \begin{array}{lll} \min (x,y) & \rightarrow & z & [x=y+z] \\ \inf (x) & \rightarrow & x+1 \\ \Omega(x) & \rightarrow & \Omega(y) \end{array} \right\}$$

- ▶ Do we have: $minus(5,2) \rightarrow_{rule} 3$? ... YES
- ▶ Do we have: minus $(5,2) \rightarrow_{\mathsf{rule}} 5-2$? ... NO
- ▶ Do we have: $minus(x,y) \rightarrow_{rule} x y$? ... NO
- ▶ Do we have: $minus(x+1,1) \rightarrow_{rule} x$? ... NO
- ▶ Do we have: $inc(x-1) \rightarrow_{\mathsf{rule}} (x-1) + 1$? ... YES
- ▶ Do we have: $\Omega(1) \rightarrow_{\mathsf{rule}} \Omega(2)$? ... YES
- ▶ Do we have: $\Omega(x+1) \rightarrow_{\mathsf{rule}} \Omega(x+2)$? ... NO
- ▶ Do we have: $\Omega(x+1) \rightarrow_{\mathsf{rule}} \Omega(2)$? ... YES

Instantiation of logical variables are restricted to values.

$$\mathcal{LV}ar(\ell \to r \ [\varphi]) = \mathcal{V}(\varphi) \cup (\mathcal{V}(r) \setminus \mathcal{V}(\ell))$$

Definition of Rewrite Steps

Suppose that signature $\Sigma_{\sf th} = \langle \mathcal{S}_{\sf th}, \mathcal{F}_{\sf th} \rangle$, $\Sigma_{\sf te} = \langle \mathcal{S}_{\sf te}, \mathcal{F}_{\sf te} \rangle$, $\Sigma_{\sf th}$ -structure \mathcal{M} , and rewrite rules \mathcal{R} are given.

1. (rule step)

$$s \rightarrow_{\mathsf{rule}} t$$

if $s=C[\ell\sigma]$ and $t=C[r\sigma]$ for some context C, rewrite rule $\rho:\ell\to r$ $[\varphi]\in\mathcal{R}$, and substitution σ such that

- $\{\sigma(x) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}al$, and
- $\blacktriangleright \models_{\mathcal{M}} \varphi \sigma \text{ (or equivalently, } \models_{\mathcal{M}, \sigma} \varphi)$
- 2. (calculation step)

$$s \rightarrow_{\mathsf{calc}} t$$

if $s = C[f(v_1, \ldots, v_n)]$ and $t = C[v_0]$ for some context C, $f \in \mathcal{F}_{\mathsf{th}}, \ v_0, v_1, \ldots, v_n \in \mathcal{V}al$ such that $f^{\mathcal{M}}(v_1, \ldots, v_n) = v_0$.

Interpreting LCTRSs by TRSs (1)

[Mitterwallner et al., IWC 2023]

Simulation of calculation steps
⇒ provide all underlying operations of M as rewrite rules.

$$\begin{aligned} \mathsf{rs}(\mathcal{M}) &= \{ \ f(v_1, \dots, v_n) \to v_0 \\ &\mid f \in \mathcal{F}_{\mathsf{th}}, v_0, \dots, v_n \in \mathcal{V}al, \\ &\quad f^{\mathcal{M}}(v_1, \dots, v_n) = v_0 \ \} \end{aligned}$$

Proposition

 $s \to_{\mathsf{calc}} t$ (in LCTRSs) iff $s \to_{\mathsf{rs}(\mathcal{M})} t$ (in TRSs).

Proof. (\Rightarrow) Let $s=C[f(v_1,\ldots,v_n)],\ t=C[v_0]$ with $f\in\mathcal{F}_{\mathrm{th}},\ v_0,\ldots,v_n\in\mathcal{V}{al}$ such that $f^{\mathcal{M}}(v_1,\ldots,v_n)=v_0$. Then $f(v_1,\ldots,v_n)\to v_0\in\mathrm{rs}(\mathcal{M})$. Thus, $s=C[f(v_1,\ldots,v_n)]\to_{\mathrm{rs}(\mathcal{M})}C[v_0]=t$. (\Leftarrow) Let $s=C[\ell\sigma],\ t=C[r\sigma]$ with $\ell\to r\in\mathrm{rules}(\mathcal{M})$. Then, by definition $\ell=f(v_1,\ldots,v_n)$ and $r=v_0$ for some $f\in\mathcal{F}_{\mathrm{th}},\ v_0,\ldots,v_n\in\mathcal{V}{al}$ such that $f^{\mathcal{M}}(v_1,\ldots,v_n)=v_0$. Thus, $s=C[\ell]=C[f(v_1,\ldots,v_n)]$ and $t=C[r]=C[v_0]$. By $f^{\mathcal{M}}(v_1,\ldots,v_n)=v_0$, we have $s\to_{\mathrm{calc}} t$. \square

Interpreting LCTRSs by TRSs (2)

[Mitterwallner et al., IWC 2023]

► Simulation of rule steps \Rightarrow provide all instantiation of rules by $\sigma: \mathcal{LV}ar(\rho) \to \mathcal{V}al$ satisfying $\models_{\mathcal{M}} \varphi \sigma$.

$$\overline{\mathcal{R}} = \bigcup_{\rho: \ \ell \to r[\varphi] \in \mathcal{R}} \{ \ l\sigma \to r\sigma \mid \sigma: \mathcal{LV}ar(\rho) \to \mathcal{V}al, \models_{\mathcal{M}} \varphi\sigma \ \}$$

Proposition

$$s \to_{\mathsf{rule}} t$$
 (in LCTRSs) iff $s \to_{\overline{\mathcal{D}}} t$ (in TRSs).

Proof. (\Rightarrow) Let $s=C[\ell\sigma]$, $t=C[r\sigma]$ with $\rho:\ \ell\to r[\varphi]\in\mathcal{R}$. Take $\sigma_{\mathsf{v}}=\sigma \sqcup (\mathcal{L}\mathcal{V}ar(\rho)),\ \sigma'=\sigma \sqcup (\mathcal{L}\mathcal{V}ar(\rho))^c.$ By $\{\sigma(x)\mid x\in\mathcal{L}\mathcal{V}ar(\rho)\}\subseteq\mathcal{V}al,$ we have $\sigma_{\mathsf{v}}:\mathcal{L}\mathcal{V}ar(\rho)\to\mathcal{V}al,\ \sigma=\sigma'\circ\sigma_{\mathsf{v}},\ \models_{\mathcal{M}}\varphi\sigma_{\mathsf{v}};\ \mathsf{so},\ l\sigma_{\mathsf{v}}\to r\sigma_{\mathsf{v}}\in\overline{\mathcal{R}}.$ Thus, $s=C[\ell\sigma]=C[(\ell\sigma_{\mathsf{v}})\sigma']\to_{\overline{\mathcal{R}}}C[(r\sigma_{\mathsf{v}})\sigma']=C[r\sigma]=t.$ (\Leftarrow) Let $s=C[(\ell\sigma)\theta]\ t=C[(r\sigma)\theta]$ with $\ell\sigma\to r\sigma\in\overline{\mathcal{R}}$ and $\rho:\ell\to r\ [\varphi]\in\mathcal{R}.$ As $\sigma:\mathcal{L}\mathcal{V}ar(\rho)\to\mathcal{V}al,\ \mathcal{V}(\ell\sigma,r\sigma)\subseteq(\mathcal{L}\mathcal{V}ar(\rho))^c,$ take $\theta'=\theta \sqcup (\mathcal{L}\mathcal{V}ar(\rho))^c,$ and we have $\ell(\sigma\uplus\theta')=(\ell\sigma)\theta'=(\ell\sigma)\theta$ and $r(\sigma\uplus\theta')=(r\sigma)\theta'=(r\sigma)\theta.$ By $\mathcal{V}(\varphi)\subseteq\mathcal{L}\mathcal{V}ar(\rho),\ \models_{\mathcal{M}}\varphi(\sigma\uplus\theta').$ So, $s=C[\ell(\sigma\uplus\theta')]\to_{\mathsf{rule}}C[r(\sigma\uplus\theta')]=t.$

Example.

$$\mathcal{R} = \left\{ \begin{array}{lll} \min(x,y) & \rightarrow & z & [x=y+z] \\ \inf(x) & \rightarrow & x+1 \\ \Omega(x) & \rightarrow & \Omega(y) \end{array} \right\}$$

$$\overline{\mathcal{R}} = \left\{ \begin{array}{lll} \min (\mathbf{0},\mathbf{0}) & \rightarrow & \mathbf{0}, & \min (\mathbf{1},\mathbf{0}) & \rightarrow & \mathbf{1}, \\ \min (\mathbf{0},\mathbf{1}) & \rightarrow & -\mathbf{1}, & \dots \\ \inf (x) & \rightarrow & x+1, & & & \\ \Omega(x) & \rightarrow & \Omega(\mathbf{0}), & \Omega(x) & \rightarrow & \Omega(\mathbf{1}), \\ \Omega(x) & \rightarrow & \Omega(\mathbf{-1}), & \dots \end{array} \right\}$$

Rewriting on Contrained Terms

[Kop & Nishida, FroCoS 2013]

Three ingredients: $s[\pi] \sim t[\psi]$, $s[\pi] \to_{\mathsf{calc}} t[\psi]$, and $s[\pi] \to_{\mathsf{rule}} t[\psi]$.

1.

$$s[\pi] \sim t[\psi]$$

if

- \blacktriangleright $\forall \gamma$: respecting $s[\pi]$, $\exists \delta$: respecting $t[\psi]$ such that $s\gamma = t\delta$.
- \blacktriangleright $\forall \delta$: respecting $t[\psi]$, $\exists \gamma$: respecting $s[\pi]$ such that $t\delta = s\gamma$.

$$\gamma$$
 respects $s[\pi] \Leftrightarrow \{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$ and $\models_{\mathcal{M}} \pi \gamma \delta$ respects $t[\psi] \Leftrightarrow \{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V}al$ and $\models_{\mathcal{M}} \psi \delta$

2.

$$s[\pi] \to_{\mathsf{calc}} t[\psi]$$

if

- $ightharpoonup s = C[f(s_1, \ldots, s_n)] \text{ with } f \in \mathcal{F}_{\mathsf{th}}, s_1, \ldots, s_n \in \mathcal{V}(\pi) \cup \mathcal{V}al,$
- ightharpoonup t = C[x] with x: fresh variable
- $\psi = (\pi \wedge x = f(s_1, \dots, s_n))$

3.

$$s[\pi] \to_{\mathsf{rule}} t[\psi]$$

if

- $ightharpoonup \pi$ is satisfiable and $\psi = \pi$.
- $s = C[\ell\sigma]$ and $t = C[r\sigma]$ with $\rho : \ell \to r \ [\varphi] \in \mathcal{R}$
- ightharpoonup Dom $(\sigma) = \mathcal{V}(\ell, r, \varphi)$
- $\blacktriangleright \models_{\mathcal{M}} (\pi \Rightarrow \varphi \sigma)$

How can we interpret rewriting on contrained terms?

Interpreting Contrained Terms

Natural(?) idea:

Example.

Theorem

$$s[\pi] \sim t[\psi] \text{ iff } \llbracket \ s[\pi] \ \rrbracket = \llbracket \ t[\psi] \ \rrbracket.$$

Proof. It suffices to show that the following two are equivalent:

- 1. $\forall \gamma$: respecting $s[\pi]$, $\exists \delta$: respecting $t[\psi]$ such that $s\gamma = t\delta$
- 2. $\llbracket s[\pi] \rrbracket \subseteq \llbracket t[\psi] \rrbracket$
- $(1\Rightarrow 2)$ Suppose $u\in \llbracket s[\pi]\rrbracket$. Then $u=s\gamma$ for some γ that respects $s[\pi]$. Then, there exists δ respecting $t[\psi]$ such that $s\gamma=t\delta$. Thus, there exists δ respecting $t[\psi]$ such that $u=t\delta$. Hence, $u\in \llbracket t[\psi]\rrbracket$.
- $(2\Rightarrow 1)$ Suppose that γ respects $s[\pi]$. Then $s\gamma\in \llbracket \ s[\pi]\ \rrbracket$. Thus, $s\gamma\in \llbracket \ t[\psi]\ \rrbracket$. Then, there exists δ respecting $t[\psi]$ such that $s\delta=t\delta$.

Interpreting Calculation Steps on Constrained Terms

Lemma(?)

```
s[\pi] \to_{\mathsf{calc},p} t[\psi] \text{ iff } \{u' \mid u \in \llbracket \ s[\pi] \ \rrbracket, u \to_{\mathsf{calc},p} u'\} = \llbracket \ t[\psi] \ \rrbracket.
```

Proof. (\Rightarrow) Suppose $s = C[f(s_1, \ldots, s_n)]_p$ with $f \in \mathcal{F}_{\mathsf{th}}$ $s_1, \ldots, s_n \in \mathcal{V}(\pi) \cup \mathcal{V}al$, and $t = C[x]_p$ with x: fresh variable, and $\psi = (\pi \wedge x = f(s_1, \dots, s_n)).$ We now show $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{calc}, v} u'\} = \llbracket t[\psi] \rrbracket.$ (\subseteq) Let $u \in [s[\pi]]$. Then, $u = s\gamma$ for some γ respecting π . We have $u|_p = (s\gamma)|_p = (s|_p)\gamma = f(s_1, \dots, s_n)\gamma = f(s_1\gamma, \dots, s_n\gamma).$ Since $s_1, \ldots, s_n \in \mathcal{V}(\pi) \cup \mathcal{V}al$, and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subset \mathcal{V}al$, $s_1\gamma,\ldots,s_n\gamma\in\mathcal{V}al$. Thus, $u\to_{\mathsf{calc},p}u[v]_p=u'$ with $v = f^{\mathcal{M}}(s_1 \gamma, \dots, s_n \gamma).$ Take δ such that $\delta(x) = v$ and $\delta(y) = \gamma(y)$ for $y \neq x$. Then $t\delta = C[x]_p\delta = C\gamma[v]_p = s\gamma[v]p = u[v]_p$. Also, by $x \notin \mathcal{V}(\psi)$, we have $\pi \gamma = \pi \delta$. Furthermore, $\delta(x) = v = f^{\mathcal{M}}(\llbracket s_1 \delta \rrbracket_{\mathcal{M}}, \dots, \llbracket s_n \delta \rrbracket_{\mathcal{M}}) = \llbracket f(s_1, \dots, s_n) \gamma \rrbracket_{\mathcal{M}}.$

Thus, $\models_{\mathcal{M}} (\pi \wedge x = f(s_1, \dots, s_n))\delta$. Hence, δ respects $t[\psi]$ and $u' = t\delta$. Hence, $u' \in \llbracket t[\psi] \rrbracket$.

(\supseteq) Suppose $w \in \llbracket t[\psi] \rrbracket$. Then $w = t\delta$ for some δ respecting $t[\delta]$. Thus, $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V}al$ and $\models_{\mathcal{M}} \psi\delta$. As $t = C[x]_p$ with x: fresh variable, $t\delta = C\delta[\delta(x)]_p$. We now show $u \to_{\mathsf{rule},p} w$ for some $u \in \llbracket s[\pi] \rrbracket$.

Firstly, as $\psi = (\pi \wedge x = f(s_1, \dots, s_n))$, we have $\models_{\mathcal{M}} \pi \delta$ and $\mathcal{V}(\pi) \subseteq \mathcal{V}(\psi)$. Thus, by $\{\delta(x) \mid x \in \mathcal{V}(\psi)\} \subseteq \mathcal{V}al$, we have $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$. Together with $\models_{\mathcal{M}} \pi \delta$, we obtain that δ respects π .

Moreover, we have $\models_{\mathcal{M}} \delta(x) = f(s_1\delta, \dots, s_n\delta)$, i.e. $\delta(x) = \llbracket \delta(x) \rrbracket_{\mathcal{M}} = f^{\mathcal{M}}(\llbracket s_1\delta \rrbracket_{\mathcal{M}}, \dots, \llbracket s_n\delta \rrbracket_{\mathcal{M}}) = \llbracket f(s_1, \dots, s_n)\delta \rrbracket_{\mathcal{M}}$. Now, take $u = w[f(s_1, \dots, s_n)\delta]_p$. Since $s_1\delta, \dots, s_n\delta \in \mathcal{V}al$, and $f^{\mathcal{M}}(s_1\delta, \dots, s_n\delta) = \llbracket f(s_1, \dots, s_n)\delta \rrbracket_{\mathcal{M}} = \llbracket u|_p \rrbracket_{\mathcal{M}}$, we have $u \to_{\text{rule},p} u[\delta(x)] = w[\delta(x)] = w$. Then $u = w[f(s_1, \dots, s_n)\delta]_p = t\delta[f(s_1, \dots, s_n)\delta]$

Then, $u=w[f(s_1,\ldots,s_n)\delta]_p=t\delta[f(s_1,\ldots,s_n)\delta]_p=t[f(s_1,\ldots,s_n)]_p\delta=C[f(s_1,\ldots,s_n)]_p\delta=s\delta$. Hence, $u=s\delta$ and δ respects π . Thus, $u\in \llbracket s[\pi] \rrbracket$.

Counterexample (1).

Let
$$s[\pi] = +(x, x)[x = 0 \lor x = 1]$$
 and $t[\psi] = y[y = 0 \lor y = 2]$.

Then, $[s[\pi]] = \{+(0,0), +(1,1)\}.$

Thus, $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{calc}, \epsilon} u' \} = \{0, 2\} = \llbracket t[\psi] \rrbracket$.

But $s [\pi] \not\to_{\mathsf{calc},\epsilon} t [\psi]$.

Here, we only have

$$s[\pi] \quad \mathop{\rightarrow_{\mathsf{calc}}}_{\sim} \quad y[(x=0 \lor x=1) \land y = +(x,x)] \\ \sim \qquad y[y=0 \lor y=2]$$

Counterexample (2).

Let
$$s[\pi] = +(x,x)[x \neq x]$$
 and $t[\psi] = +(x,y)[x \neq x \land y \neq y]$. Then, $\llbracket s[\pi] \rrbracket = \llbracket t[\psi] \rrbracket = \emptyset$, and thus, $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{calc},\epsilon} u'\} = \emptyset = \llbracket t[\psi] \rrbracket$. But $s[\pi] \not\rightarrow_{\mathsf{calc},\epsilon} t[\psi]$.

Lemma

Suppose

- \blacktriangleright π is satisfiable, $p \in Pos(s)$,
- ▶ for any $u \in \llbracket s[\pi] \rrbracket$ there exists u' such that $u \to_{\mathsf{calc},p} u'$, and
- $\qquad \qquad \{u' \mid u \in \llbracket \ s[\pi] \ \rrbracket, u \rightarrow_{\mathsf{calc}, p} u'\} = \llbracket \ t[\psi] \ \rrbracket.$

Then, $s[\pi] \to_{\mathsf{calc},p} \circ \sim t[\psi]$.

Proof. By satisfiability, $\llbracket s[\pi] \rrbracket \neq \emptyset$. Thus, there exists $u \in \llbracket s[\pi] \rrbracket$ and u', such that $u \to_{\mathsf{calc},p} u'$. Thus, $u = C[f(u_1,\ldots,u_n)]_p$ for some $f \in \mathcal{F}_{\mathsf{te}}$, and $u_1,\ldots,u_n \in \mathcal{V}al$.

By $u\in \llbracket s[\pi] \rrbracket$, $u=s\gamma$ for some γ such that γ respects π . Thus, $s=\hat{C}[f(s_1,\ldots,s_n)]_p$ with $\hat{C}\gamma=C$ and $s_i\gamma=u_i$ $(1\leq i\leq n)$. Suppose $s_i\not\in \mathcal{V}al$. If $s_i\not\in \mathcal{V}(\pi)$, then one can modify γ such as $s_i\gamma\notin \mathcal{V}al$, while keep respecting π . This contradicts our second condition. Thus, $s_i\in \mathcal{V}(\pi)\cup \mathcal{V}al$ for $i=1,\ldots,n$.

Thus, s $[\pi] \to_{\mathsf{calc},p} s[x]_p [\pi \land x = f(s_1,\ldots,s_n)]$. It remains to show $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to_{\mathsf{calc},p} u'\} = \llbracket s[x]_p [\pi \land x = f(s_1,\ldots,s_n)] \rrbracket$. But this follows as $s|_p = f(s_1,\ldots,s_n)$.

Interpreting Calculation Steps on Constrained Terms

So, we have

Theorem

If
$$s[\pi] \to_{\mathsf{calc},p} t[\psi]$$
, then $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to_{\mathsf{rs}(\mathcal{M}),p} u'\} = \llbracket t[\psi] \rrbracket$.

Theorem

Suppose

- \blacktriangleright π is satisfiable, $p \in Pos(s)$,
- ▶ for any $u \in \llbracket s[\pi] \rrbracket$ there exists u' such that $u \to_{rs(\mathcal{M}),p} u'$, and
- $\{u' \mid u \in [\![s[\pi]]\!], u \to_{rs(\mathcal{M}), p} u'\} = [\![t[\psi]]\!].$

Then, $s[\pi] \to_{\mathsf{calc},p} \circ \sim t[\psi]$.

What is the precise correspondence? Bisimilarity? Functor?

Interpreting Rule Steps on Constrained Terms ...

At this point, I remind that [Kop & Nishida,FroCoS 2013] already shows

Proposition [Kop & Nishida, FroCoS 2013]

If $s[\pi] \to t[\psi]$ then for any γ that respect π there exists δ that respect ψ such that $s\gamma \to t\psi$.

In our terminology, this is equivalent to:

Proposition

If
$$s[\pi] \to t[\psi]$$
 then $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to u'\} \subseteq \llbracket t[\psi] \rrbracket$.

The following our version is slightly stronger than this (?).

Conjecture

If
$$s[\pi] \to t[\psi]$$
 then $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \to u'\} = \llbracket t[\psi] \rrbracket$.

Interpreting Rule Steps on Constrained Terms

Lemma

```
\text{If } s[\pi] \to_{\mathsf{rule},p} t[\pi] \text{, then } \{u' \mid u \in \llbracket \ s[\pi] \ \rrbracket, u \to_{\mathsf{rule},p} u'\} = \llbracket \ t[\pi] \ \rrbracket.
```

Proof. Suppose π is satisfiable, $s=C[\ell\sigma]_n$ and $t=C[r\sigma]_n$, with $\rho: \ell \to r \ [\varphi] \in \mathcal{R}$, and $\mathrm{Dom}(\sigma) = \mathcal{V}(\ell, r, \varphi)$, and $\{\sigma(x) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}al$, and $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$. We now show $\{u' \mid u \in \llbracket s[\pi] \rrbracket, u \rightarrow_{\mathsf{rule},p} u'\} = \llbracket t[\pi] \rrbracket.$ (\subseteq) Suppose $u \in [\![s[\pi] \!]\!]$. Then, $u = s\gamma$ with γ respecting π . Thus, $\models_{\mathcal{M}} \pi \gamma$ and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subset \mathcal{V}al$. Also, by $s[\pi] \to_{\text{rule } n} t[\pi]$, we have $u|_n = s|_n \gamma = (\ell \sigma) \gamma$. Since $\{\sigma(x) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}al$ and $\{\gamma(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$, we have $\{\gamma(\sigma(x)) \mid x \in \mathcal{LV}ar(\rho)\} \subseteq \mathcal{V}al$. By $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$, we have $\models_{\mathcal{M}} (\pi\gamma \Rightarrow \varphi\sigma\gamma)$, and hence by $\models_{\mathcal{M}} \pi \gamma$, we have $\models_{\mathcal{M}} \varphi \sigma \gamma$. Thus, $u = s\gamma = C[\ell\sigma]\gamma = C\gamma[\ell\sigma\gamma] \rightarrow_{\mathsf{rule}} C\gamma[r\sigma\gamma].$ Let $u' = C\gamma[r\sigma\gamma].$ Since $t = C[r\sigma]_p$, we have $u' = C\gamma[r\sigma\gamma] = C[r\sigma]\gamma = t\gamma$. Since γ respects π , it follows $u' \in [t[\pi]]$.

(\supseteq) Suppose $w \in \llbracket t[\pi] \rrbracket$. Then, $w = t\delta$ with δ respecting π . Thus, $\models_{\mathcal{M}} \pi\delta$ and $\{\delta(x) \mid x \in \mathcal{V}(\pi)\} \subseteq \mathcal{V}al$. Also, by $s[\pi] \to_{\mathsf{rule},p} t[\pi]$, we have $w|_p = t|_p\delta = (r\sigma)\delta$. Since $\{\sigma(x) \mid x \in \mathcal{L}\mathcal{V}ar(\rho)\} \subseteq \mathcal{V}(\pi) \cup \mathcal{V}al$ and $\mathcal{V}(\pi) \subseteq \mathcal{L}\mathcal{V}ar(\rho)$, we have $\{\delta(\sigma(x)) \mid x \in \mathcal{L}\mathcal{V}ar(\rho)\} \subseteq \mathcal{V}al$. By $\models_{\mathcal{M}} (\pi \Rightarrow \varphi\sigma)$, we have $\models_{\mathcal{M}} (\pi\delta \Rightarrow \varphi\sigma\delta)$, and hence by $\models_{\mathcal{M}} \pi\delta$, we have $\models_{\mathcal{M}} \varphi\sigma\delta$. Also, $w = t\delta = C[r\sigma]\delta = C\delta[r\sigma\delta]$. Take $u = C\delta[\ell\sigma\delta]$. Then, $u = C\delta[\ell\sigma\delta] \to_{\mathsf{rule},p} C\delta[r\sigma\delta] = w$. Since $s = C[\ell\sigma]_p$, we have $u = C\delta[\ell\sigma\delta] = C[\ell\sigma]\gamma = s\gamma$. Since γ

respects π , it follows $u \in [s[\pi]]$.

Conjecture

Suppose

- \blacktriangleright π is satisfiable, $p \in Pos(s)$, $\rho \in \mathcal{R}$,
- ▶ for any $u \in \llbracket s[\pi] \rrbracket$ there exists u' such that $u \to_{\rho,p} u'$, and

Then, $s[\pi] \to_{\mathsf{rule},p} t[\pi]$.

Proof. Let $\rho:\ell\to r\ [\varphi]\in\mathcal{R}$. By satisfiability, $\llbracket \ s[\pi]\ \rrbracket\neq\emptyset$. Thus, there exists $u\in\llbracket \ s[\pi]\ \rrbracket$ and u', such that $u\to_{\rho,p}u'$. Thus, $u=C[\ell\sigma]_p,\ u'=C[r\sigma]_p,\ \{\sigma(x)\mid x\in\mathcal{LV}ar(\rho)\}\subseteq\mathcal{V}al$, and $\models_{\mathcal{M}}\varphi\sigma$.

By $u \in \llbracket s[\pi] \rrbracket$, $u = s\gamma$ for some γ such that γ respects π .

Thus, by $u=s\gamma$ and $u=C[\ell\sigma]_p$, we know $s=\hat{C}[\hat{\ell}\hat{\sigma}]_p$, $\hat{C}\gamma=C$ and $(\hat{\ell}\hat{\sigma})\gamma=\ell\sigma$??? ...If $\hat{\ell}\neq\ell$ then we can not rewrite $s[\pi]$...

Counterexample.

$$\mathcal{R} = \{ \rho : \mathsf{f}(\mathsf{0}) \to \mathsf{1} \}$$

Take
$$s[\pi]=\mathsf{f}(x)[x=0]$$
 and $t[\pi]=1[x=0]$. Then, $s[\pi]$ $=$ $\{\mathsf{f}(0)\}$ and $t[\pi]$ $=$ $\{\mathsf{f}(1)\}$. Take $f(1)$ $=$ $\{\mathsf{f}(1)\}$. Then,

- \blacktriangleright π is satisfiable \checkmark , $p \in Pos(s) \checkmark$, $\rho \in \mathcal{R} \checkmark$,
- ▶ for any $u \in \llbracket s[\pi] \rrbracket$ there exists u' such that $u \to_{\rho,p} u' \checkmark$, and
- $\qquad \qquad \{u' \mid u \in \llbracket \ s[\pi] \ \rrbracket, u \to_{\rho,p} u'\} = \llbracket \ t[\pi] \ \rrbracket \checkmark.$

But we don't have $f(x)[x=0] \rightarrow 1[x=0]$.

$$s[\pi] \to_{\mathsf{rule}} t[\psi]$$
 if

- $ightharpoonup \pi$ is satisfiable and $\psi = \pi$.
- $s = C[\ell\sigma]$ and $t = C[r\sigma]$ with $\rho : \ell \to r$ $[\varphi] \in \mathcal{R}$

- $\blacktriangleright \models_{\mathcal{M}} (\pi \Rightarrow \varphi \sigma)$

Value-free-pattern LCTRSs

Definition

A rewrite rule $\ell \to r$ $[\varphi]$ has *value-free-pattern* if ℓ does not contain value. An LCTRS $\mathcal R$ is value-free-pattern if so are all rules.

Lemma

For any rewrite rule ρ there exists a value-free-pattern rewrite rule ρ' such that $\forall s,t.$ $(s\to_{\rho} t \text{ iff } s\to_{\rho'} t).$

Proof. This is because for any $\rho:C[v_1,\ldots,v_n]\to r[\varphi]$ (with all values v_1,\ldots,v_n in LHS indicated), one can take $\rho':C[x_1,\ldots,x_n]\to r[\varphi\wedge x_1=v_1\wedge\cdots\wedge x_n=v_n]$, which is value-free-pattern.

Thus, restricting rules to value-free-pattern is not a essential restriction.

Conjecture

Suppose

- \triangleright \mathcal{R} has value-free-pattern,
- \blacktriangleright π is satisfiable, $p \in Pos(s)$, $\rho \in \mathcal{R}$,
- for any $u \in \llbracket s[\pi] \rrbracket$ there exists u' such that $u \to_{\rho,p} u'$, and

Then, $s[\pi] \to_{\mathsf{rule},p} t[\pi]$.

Proof. Let $\rho:\ell\to r\ [\varphi]\in\mathcal{R}$. By satisfiability, $\llbracket\ s[\pi]\ \rrbracket\neq\emptyset$. Thus, there exists $u\in\llbracket\ s[\pi]\ \rrbracket$ and u', such that $u\to_{\rho,p}u'$. Thus, $u=C[\ell\sigma]_p,\ u'=C[r\sigma]_p,\ \{\sigma(x)\mid x\in\mathcal{LV}ar(\rho)\}\subseteq\mathcal{V}al$, and $\models_{\mathcal{M}}\varphi\sigma$.

By $u \in \llbracket s[\pi] \rrbracket$, $u = s\gamma$ for some γ such that γ respects π . W.l.o.g. one can take u in such a way that $\gamma(x) \notin \mathcal{V}al$ for any $x \notin \mathcal{V}(\pi)$.

Thus, by $u=s\gamma$ and $u=C[\ell\sigma]_p$, we know $C[\ell\sigma]_p=s\gamma$. Since $p\in Pos(s)$, we can take $s=\hat{C}[s']_p$.

Thus $C[\ell\sigma]_p=\hat{C}[s']_p\gamma=\hat{C}\gamma[s'\gamma]_p$. Thus, $C=\hat{C}\gamma$ and $\ell\sigma=s'\gamma$. Then, since ℓ does not contain values, one can let $s'=\ell\sigma'$ for some σ' . Then, $\ell\sigma=s'\gamma=\ell\sigma'\gamma$ and $\sigma'(x)\in\mathcal{V}\cup\mathcal{V}al$ for $x\in\mathcal{L}\mathcal{V}ar(\rho)$ and $s=\hat{C}[s']=\hat{C}[\ell\sigma']$. Let $x\in\mathcal{L}\mathcal{V}ar(\rho)$. By $\sigma(x)\in\mathcal{V}al$ and $\sigma(x)=\gamma(\sigma'(x))$, we have either $\sigma'(x)\in\mathcal{V}$ or $\sigma'(x)\in\mathcal{V}al$.

In the former case, we can take $\sigma'(x) = x'$ for some $x' \in \mathcal{V}(\pi)$, because of the way we take u and $\gamma(\sigma'(x)) \in \mathcal{V}al$.

Next, do we have $\models_{\mathcal{M}} (\pi \Rightarrow \varphi \sigma')$???

For this, we have to show that, for any valuation ξ on \mathcal{M} , $\models_{\mathcal{M},\xi} \pi$ implies $\models_{\mathcal{M},\xi} \varphi \sigma'$.

Suppose $\models_{\mathcal{M},\xi} \pi$. Then $\models_{\mathcal{M}} \pi \xi$. Thus, we could take $u(=s\gamma)$ such that $\gamma(x) = \xi(x)$ for all $x \in \mathcal{V}(\pi)$.

From $\models_{\mathcal{M}} \varphi \sigma$, maybe we get $\models_{\mathcal{M}} \varphi \sigma' \gamma$.(?) (Then, we have $\models_{\mathcal{M},\xi} \varphi \sigma'$.)

Currrently, I don't know the conjecture holds, or still there is a further counterexample.

Concluding Remarks

From perspective of interpreting LCTRSs in TRSs:

- ▶ interpetation of rewrite steps <u>on terms</u> seems to be understood clearly.
- for interpetation of rewrite steps on constrained terms:
 - it seems there is a natural interpretation
 - $\llbracket \cdot \rrbracket : \operatorname{CnstrTerm} \to \operatorname{TermSet}.$
 - ightharpoonup equivalence relation \sim on CnstrTerm is mapped to the identity relation on TermSet.
 - binary relation →_{calc} on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet in terms of CnstrTerm is not clear.
 - binary relation →_{rule} on CnstrTerm relates to a relation on TermSet but not so clear. Also, characterization of relation on TermSet, in terms of CnstrTerm is unclear.
- Some related questions
 - ► What is the expressivity of CnstrTerm? I.e., when a term set is expressed by a constrained term?
 - Is · ~ · decidable? (YES ⇒ [Kojima & Nishida, PRO2023]) More generally, what kinds of predicates on TermSet is computationally solved by means of CnstrTerm?

24 / 24