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Logically Constrained Term Rewriting Systems (LCTRSs)
[Kop & Nishida,FroCoS 2013]

R_{ sum(z) = 0[0> 4] }

R
| sum(z) — x+sum(z+ —1) [=(0 > z)]

» (many-sorted) theory signature 3, = (Sth, Fth) and term
signature Yo = (Ste, Fte)

> for f:71 X+ X T, = 79 € Ftn, we ask 19, ..., 7Tn € Sth.

» An underlying model (background theory) M over ¥y, is
given, e.g. B, Z, N\, +, ...

» All elements of carrier set | M| are supposed to exist in 3, as
contants (which we call values), e.g. true,false, 0, —256, ...

» A rule has form ¢ — r [¢], where ¢ is a Yyp-term of type Bool
and root () € Fie.

» Calculations by operations in M is embodied: e.g.
1+1—2, 12 >10 — true, true A false — false, ...
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Rewrite Steps of LCTRSs (1)

[ sum(z) — 0 [0 > z]
R‘{ sum(z) — z+sum@+—1) [+(0> )] }

(over the integer arithmetic)

» Rule Step (—ye): rewriting using given rewrite rules

» The rule ¢ — r [¢] is applied when the constraint ¢ is
satisfied. (Evaluation of constraint is a meta-calculation.)

» Calculation Step (—calc): rewriting induced by the underlying

model
» Each calculation step is applied for the term f(v1,...,vy,)
with f € Fyn and values vy, ..., v,.

sum(l) —ye 14+sum(l+4—1)
—rcale 1+ sum(0)
—rule ﬂ
—cale 1
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Rewrite Steps of

|

Do we have:
Do we have:
Do we have:
Do we have:
Do we have:

Do we have:

vVvVvyvVvyYvVvyyy

Do we have:

» Do we have:

LCTRSs (2)

minus(z,y) — =z [z =y + 7]

inc(z) — o+1

Q) = Qy) }
minus(5,2) —ye 3 7 ... YES
minus(5,2) —e 5 —2 7 ... NO
minus(z,y) —wle T —Yy ? ... NO
minus(z +1,1) = ez 7 ... NO
inc(zx —1) =pe (x—1)4+1 7? ... YES
Q1) —vwe 2(2) 7 ... YES
Qz+1) 5e 2z +2) ? ... NO
Qz+1) e 22) 7 .. YES

Instantiation of logical variables are restricted to values.

LVar(t =7 [¢]) = V() U (V(r) \ V(£))
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Definition of Rewrite Steps

Suppose that signature X = (Sth, Fth), SZte = (Stes Fte),
Yh-structure M, and rewrite rules R are given.

1. (rule step)
S —rule t

if s = C[lo] and t = C[ro] for some context C, rewrite rule
p:l— 1 [p] €R, and substitution o such that
> {o(z) |z € LVar(p)} C Val, and
> = o (or equivalently, Ea o @)
2. (calculation step)
5 —rcale

if s =C[f(v1,...,v,)] and t = C[vy] for some context C,

f € Fin, v0,01,...,vn € Val such that fM(vy, ..., v,) = vo.

4/24



Interpreting LCTRSs by TRSs (1)
[Mitterwallner et al., IWC 2023]

» Simulation of calculation steps
=- provide all underlying operations of M as rewrite rules.

I’S(M) = { f(vlv-"7vn) — Vo
| f € Finyvo,-..,0n € Val,

fM(Ulv"'v’Un>:v0}

Proposition
8 —rcale t (in LCTRSs) iff s —aq) t (in TRSs).

Proof. (=) Let s = C[f(v1,...,v,)], t = Clvg] with f € Fin, vo, ..., vn
€ Val such that fM(vy,...,v,) =vo. Then f(vy,...,v,)—vo € rs(M).
Thus, s = C[f(v1,...,vn)] =) Cloo] =t

(<) Let s = C[lo], t = C[ro] with £ — r € rules(M). Then, by

definition ¢ = f(v1,...,v,) and r = v for some [ € Fyp, vo,...,0, €
Val such that fM(vy,...,v,) =vo. Thus, s = C[f] = C[f(v1,...,v,)]
and t = C[r] = Clvg]. By fM(v1,...,v,) = v, we have s —cac t. O
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Interpreting LCTRSs by TRSs (2)
[Mitterwallner et al., IWC 2023]
» Simulation of rule steps
= provide all instantiation of rules by o : LVar(p) — Val

satisfying =1 o

R = U {lo = ro|o:LVar(p) = Val, = o }
p: L—=r[p]ER

Proposition
5 —rrule t (in LCTRSs) iff s =7 ¢ (in TRSs).

Proof. (=) Let s = C[lo], t = C[ro] with p: £ — r[p] € R. Take o, =
al(LVar(p)), o' = ol(LVar(p))®. By {o(x) | x € LVar(p)} C Val, we

have o, : LVar(p) = Val, 0 = ¢’ o 0y, Em @oy; so, lo, — roy, € R.

Thus, s = Cllo] = C[(loy)o'] =5 C[(roy)o’] = Clro] =t. («) Let
s=C[(lco)0] t = C|(ro)0] with bo —roc € Rand p: £ — 1 [p] € R. As

o LVar(p) — Val, V(lo,ro) C (LVar(p))°, take 0" = 0| (LVar(p))°,

and we have ((oc W ') = ((o)0' = (Lo)f and r(c WO') = (ro)d = (ro)é.

By V(p) € LVar(p), Epp(cWo'). So,s = Cle(ow0)]=meClr(c 0] =t /a4



Example.

minus(z,y) — = [z =y + 2]
R =< inc(z) — x+1

Q) S
minus(0,0) — 0, minus(1,0) — 1,
minus(0,1) — -1, ...
R =< inc(x) — z+1,
Q(x) - Q(0), Q(x) —  Q(1),
Q(z) - Q(-1), ...
minus(5,2)  —ye 3 minus(5, 2) Pule 5—2
inc(lx —1) —ye (x—1)+1 minus(z,y) Ple T—Y
Q(1) —rle 2(2) minus(z +1,1)  Aue =
Qz+1) —we Q2 Q(z+1) Frle Qz+2)
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Rewriting on Contrained Terms

[Kop & Nishida,FroCoS 2013]
Three ingredients: s[r] ~ t[Y)], s[m] —calc t[], and s[m] —ule t].

1.
s[m] ~ t[y]
if
> Vv respecting s[r|, 39: respecting t[¢] such that sy = t0.
> Vo: respecting t[], Iv: respecting s[w] such that t6 = sy.
~ respects s[r] < {y(z) | x € V(7)} C Val and | Ty
J respects t[¢)] < {6(x) |z € V(¢)} C Val and = 96
2.
S[W] —calc tW]
if
> s=C[f(s1,...,8n)] with f € Fin, S1,...,8, € V(7)) U Val,
> ¢ = Clx] with z: fresh variable
> = (nAx=f(s1,-.-,5n))
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s[r] —rute t[Y]

» 7 is satisfiable and ¢ = 7.

» s=Clloland t = Clro| with p: L = r [p] € R
» Dom(o) =V, r,¢)

> {o(z) |z € LVar(p)} CV(r)UVal

> Fm (T = ¢o)

How can we interpret rewriting on contrained terms?
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Interpreting Contrained Terms
Natural(?) idea:
[sx]] = A{sv|{r(@) |z e€V(m)} S Val,l=pm 7}
(= {s7 | respects s[n]})
Example.

[z4+y[z>0] = {0+y,14+(y+1),1+(z+y),...}
= {n+t|nezteT(F,V)}

slm] ~ ¢ iff [ sfx] ] = [ ¢[¢] -

Proof. It suffices to show that the following two are equivalent:

1. Vv: respecting s[r], 30: respecting t[t)] such that sy = t§

2. [slr] ] <[ tv]]
(1 = 2) Suppose u € [ s[nr] |. Then u = sy for some ~ that respects s[r]. Then,
there exists § respecting t[¢] such that sy = td. Thus, there exists § respecting t[¢]
such that u = t§. Hence, u € [ t[¢] ].
(2 = 1) Suppose that v respects s[w]. Then sy € [ s[x| |. Thus, sy € [ t[¢] |. Then,
there exists § respecting t[¢] such that s§ = t. |
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Interpreting Calculation Steps on Constrained Terms
Lemma(?)
5[77] —7calc,p t[ﬂ’] iff {u, | S [[ S[ﬂ-] ]]’u —7calc,p Ul} = [[ t[T/J] ]]

Proof. (=) Suppose s = C[f(s1,...,5n)]p With f € Fin

51,...,8, € V(m) UVal, and t = C[z], with x: fresh variable, and

Y= (mNANz=f(s1,...,5n)).

We now show {u' | u € [ s[n] [, 4 —caicp v} = [ t[¢] ].

(C) Let u € [ s[x] |}. Then, u = sy for some  respecting w. We

have ul, = (s7)|p = (slp)y = f(s1,. .-, 50)7 = f(517, .-, 507).
Since s1,...,8, € V(m)UVal, and {v(z) | z € V(7)} C Val,
517, ..., Sn7y € Val. Thus, u —caicp ulv]p, = v with

v = fM(SIF% ceey Sn’}/)

Take § such that §(z) = v and 6(y) = y(y) for y # x. Then

té = Clz],0 = Cv[v]p = svy[v]p = ulv],. Also, by x ¢ V(¢)), we
have my = wd. Furthermore,

5(2) = v = F([51600s - - [5n8100) = [F (51, - 5007t
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Thus, Eam (m Az = f(s1,...,8,))0. Hence, § respects t[¢)] and
u' =1td. Hence, v’ € [ t[¢] |.

(D) Suppose w € [ t[t)] |. Then w =t for some § respecting t[d].
Thus, {6(z) | z € V(¢)} C Val and =pq ¢0d. As t = C[z], with z:
fresh variable, t0 = C6[d(x)],. We now show © —yylep, w for some
u e [ s[n]].

Firstly, as v = (m Az = f(s1,...,5n)), we have = md and

V(m) C V(). Thus, by {d(z) | z € V(¢)} C Val, we have

{6(x) | x € V(m)} C Val. Together with =r 79, we obtain that §
respects 7.

Moreover, we have = 6(x) = f(s10,...,8,0), i.e. d(x) =
[62)]an = FM (5181t - [sn0Lat) = LF (51,2 50)3] .

Now, take v = w[f(s1,...,Sn)d]p. Since s19,...,5,0 € Val, and
fM(s10, ... ,800) = [f (51, -+, 80)0]m = [ulp]m, we have

U —rylep u[d(2)] = wld(z)] = w.

Then, u=w[f(s1,...,5,)d]p =t6[f(s1,...,50)0]p =
tf(s1,...,8n)]p0 = C[f(s1,...,5n)]p0 = s6. Hence, u = s and §
respects 7. Thus, u € [ s[x] |.
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(<7)

Counterexample (1).

Let s[r] = +(z,z)[rt=0Ve =1 and tY] =yly =0V y = 2].
Then, [ s[r] | = {+(0,0),+(1,1)}.

Thus, {u' | u € [ slr] |, u —eater o'} = {0,2} = [ #[] .

But s [m] Acalce t [¢].

Here,we only have

Counterexample (2

).
Let s[r] = +(z,2)[z # z] and t[Y)] = +(z,y)[x # z ANy # y.
Then, [ s[x] | = t[] | =0, and thus,

{U, ‘ (NS [[ 3[71'] ﬂ —7calc,e u/} =0= [[ t["‘ﬂ] ]]

But s [m] Acalce t [¢].
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Lemma

Suppose
» 1 is satisfiable, p € Pos(s),
» for any u € [ s[n] | there exists v/ such that u —c,ic, @/, and

| 2 {u’ ‘ u € [[ 3[71'] ﬂ,u —7cale,p u/} = [[ t[w] ]]
Then, s[m] —caicp © ~ t[¢)].

Proof. By satisfiability, [ s[n] | # 0. Thus, there exists u € [ s[r] |
and u/, such that u —ccp v/'. Thus, u = C[f(u1,...,up)], for
some f € Fie, and uq, ..., u, € Val.

By u € [ s[x] |, uw = sy for some «y such that ~y respects 7. Thus,
s =C[f(s1,...,5n)]p with Cy = C and s;y = u; (1 <i<n).
Suppose s; € Val. If s; ¢ V(r), then one can modify v such as
si7 ¢ Val, while keep respecting m. This contradicts our second
condition. Thus, s; € V(r)UVal fori =1,...,n.

Thus, s [7] =caicp slz]p [T Az = f(s1,...,sn)]. It remains to
show {u/ |u € [ s[7] |,u —catep @'} = [ slzlp [ Az = f(s1,...,50)] ]. But this
follows as s, = f(s1,...,5n).
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Interpreting Calculation Steps on Constrained Terms
So, we have

If 5[71-] —calc,p t[?/J], then
{u, ‘ u € [[ S[ﬂ-] ﬂ?u _>rs(./\/l),p u/} = Ht[w] ﬂ

Theorem

Suppose
» 7 is satisfiable, p € Pos(s),

> for any u € [ s[n] | there exists u’ such that u — g rq) o',

and
> {u' |ue€[s[n]],u v} =[tH ]
Then, s[7] —calc,p © ~ t[Y)].

What is the precise correspondence? Bisimilarity? Functor?
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Interpreting Rule Steps on Constrained Terms ...

At this point, | remind that [Kop & Nishida,FroCoS 2013] already
shows

Proposition [Kop & Nishida, FroCoS 2013]

If s[r] — t[¢] then for any 7 that respect 7 there exists ¢ that
respect ¢ such that sy — t).

In our terminology, this is equivalent to:
Proposition
If s[m] — t[¢)] then {u/ |u € [ s[n] |,u—u'} C [ t[y]].

The following our version is slightly stronger than this (?).

Conjecture

If s[r] — t[e)] then {u/ | uw € [ s[n] J,u = u'} =] t[Y]].
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Interpreting Rule Steps on Constrained Terms

Lemma

If s[m] —rute,p t[m], then {u’ | w € [ s[n] |,u —rtep v’} = [ t[n] ].

Proof. Suppose 7 is satisfiable, s = C[¢o], and t = C[ro], , with
p:l—r[pl €R,and Dom(c) =V({,r, ¢), and

{o(x) | x € LYVar(p)} CV(r)UVal, and Ep (7 = o).

We now show {u' | u € [ s[n] [, 4 —ruep v'} = [ t[7] |

(C) Suppose u € [ s[x] |. Then, u = sy with  respecting .
Thus, = 7y and {y(z) | z € V(7)} C Val. Also, by

s[T] —rulep t[m], we have u|, = s|,7 = (fo)7y. Since

{o(z) | z € LVar(p)} C V(r)UVal and {v(z) | z € V(7)} C Val, we have
{v(c(2)) | z € LVar(p)} C Val. By Ep (m = ¢o), we have =y (77 = @o7y), and
hence by =4 T, we have =4 @oy. 1 hus,

u = sy = Cllo]y = Cy[loy] =e Cy[rom]. Let u' = Cylrovy].
Since t = Clro],, we have v’ = Cv[rovy] = C[ro]y = tv. Since
respects 7, it follows u' € [ t[x] |.
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(2)

Suppose w € [ t[n] |. Then, w = t§ with § respecting 7. Thus,
Em m and {§(x) |z € V(m)} € Val. Also, by s[m] —uiep t[7],
we have w|, = t[,0 = (r0)d.

Since {o(z) | z € LVar(p)} C V(r)U Val and V() C LVar(p),
we have {d(c(x)) | z € LVar(p)} C Val. By Em (7 = ¢o), we
have = (10 = ¢0od), and hence by = 70, we have = pod.
Also, w = t§ = Clro|d = Cé[rod]. Take u = Co[lod]. Then,

u = Co[lod] —ryiep Colrod] = w.

Since s = C[lo],, we have u = Co[lcd] = C[lo]y = s7y. Since
respects m, it follows u € [ s[n] |. O
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Conjecture

Suppose
» 7 is satisfiable, p € Pos(s), p € R,
» for any u € [ s[n] | there exists v’ such that u —,,, v/, and
> {u' |ue[sr]],u—ppu}=T[tnr]

Then, 5[] —rule p t[7].

Proof. Let p: £ — r [p] € R. By satisfiability, [ s[7] | # 0. Thus,
there exists u € [ s[x] | and v/, such that u —,, u’. Thus,
u = Cllo]y, v = Clrolp, {o(x) | z € LVar(p)} C Val, and

FEm o
By u € [ s[n] |, u = sy for some ~y such that =y respects .

Thus, by u = sy and u = C[lo],, we know s = é[f&]p, Cy=C
and (£6)y = lo 777 _If { # { then we can not rewrite s[7]...
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Counterexample.

R={p:f(0) = 1}
Take s[n] = f(x)[z = 0] and t[r] = 1[x = 0]. Then,

[ s[x] | ={f(0)} and [ t[r] | = {1}. Take p =e.
Then,

» 7 is satisfiablev’, p € Pos(s)v', p € RV,
» for any u € [ s[r] | there exists u’ such that u —,, «'v/, and
> {u Juel s ]u—ppu}=[tr]v

But we don't have f(z)[x = 0] — 1[z = 0].

]
>
» s=C[lo] and t = C[ro] with p: £ =1 [p] € R
> Dom(o) = V(6,r, 9)
» {o(z) |z € LVar(p)} CV(r)UVal
| 4
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Value-free-pattern LCTRSs

A rewrite rule ¢ — r [p] has value-free-pattern if ¢ does not
contain value. An LCTRS R is value-free-pattern if so are all rules.

Lemma

For any rewrite rule p there exists a value-free-pattern rewrite rule
p’ such that Vs, t. (s —, tiff s =, ).

Proof. This is because for any p : Clvy,...,v,] — r[p] (with all
values vy, ...,v, in LHS indicated), one can take

p i Clay,...,xp] = rl[e Axy =v1 A+ Ay = vy], which is
value-free-pattern. O

Thus, restricting rules to value-free-pattern is not a essential
restriction.
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Conjecture

Suppose
> R has value-free-pattern,
» 7 is satisfiable, p € Pos(s), p € R,
» for any u € [ s[n] | there exists u’ such that u —,,, v/, and
> {u' [ue[sr]]u—ppu'}=[tn]]
Then, s[] —ulep t[7].

Proof. Let p: £ — r [p] € R. By satisfiability, [ s[x] | # 0. Thus,
there exists u 6 [[ s[r] | and «, such that u —,, u'. Thus,

= Cllo]p, v = Clrolp, {o(z) | x € LVar(p)} C Val, and
\ZM po.
By u € [ s[n] |, u = s7y for some  such that ~ respects . W.l.0.g.
one can take w in such a way that v(x) ¢ Val for any x ¢ V(7).

Thus, by u = sy and u = Cllo],, we know C[lo], = sv. Since
p € Pos(s), we can take s = C[¢],.
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Thus C[lo], = C[s'],7 = Cy[s'y],. Thus, C = Cy and lo = 5'y.
Then, since ¢ does not contain values, one can let s’ = (o’ for
some o’. Then, o = s’y = lo’~y and o'(z) € V U Val for

z € LVar(p) and s = C[s'] = C[lo”].

Let z € LVar(p). By o(x) € Val and o(z) = v(o'(x)), we have
either o’(x) € V or o’(z) € Val.

In the former case, we can take o’(z) = 2’ for some 2/ € V(7r),

because of the way we take u and v(¢'(z)) € Val.

Next, do we have = (7 = po’)?7?

For this, we have to show that, for any valuation £ on M, ):M,g T
implies =16 o

Suppose [=pq,¢ m. Then = €. Thus, we could take u(= s7v)
such that y(z) = &(z) for all z € V().

From = o, maybe we get = ©o’7.(?) (Then, we have

Fame ')

Currrently, | don’t know the conjecture holds, or still there is a
further counterexample.
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Concluding Remarks
From perspective of interpreting LCTRSs in TRSs:
P interpetation of rewrite steps on terms seems to be
understood clearly.
> for interpetation of rewrite steps on constrained terms:

P it seems there is a natural interpretation
[-] : CnstrTerm — TermSet.

» equivalence relation ~ on CnstrTerm is mapped to the
identity relation on TermSet.

» binary relation — ¢4 on CnstrTerm relates to a relation on
TermSet but not so clear. Also, characterization of relation on
TermSet in terms of CnstrTerm is not clear.

» binary relation — e on CnstrTerm relates to a relation on
TermSet but not so clear. Also, characterization of relation on
TermSet in terms of CnstrTerm is unclear.

» Some related questions

» What is the expressivity of CnstrTerm? l.e., when a term set
is expressed by a constrained term?

» |s - ~ - decidable? (YES = [Kojima & Nishida, PRO2023]) More
generally, what kinds of predicates on TermSet is
computationally solved by means of CnstrTerm? 24/24




