Duplicate Check

Nao Hirokawa

JAIST

February 20, 2024

About This Talk

SMT solving for $\mathcal{R} \approx \mathcal{S}$fingerprintsexperimentsfuture work
Example (partition)

consider collection of TRSs $\mathfrak{R}=\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{6}\right\}$:

$$
\left.\begin{array}{l}
\mathcal{R}_{1}=\left\{\begin{array}{cl}
+(0, x) & \rightarrow x \\
+(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(+(x, y)) \\
\mathrm{p}(\mathrm{~s}(x)) & \rightarrow x
\end{array}\right\}
\end{array} \begin{array}{l}
\mathcal{R}_{3}=\{\mathrm{a} \rightarrow \mathrm{~b}\} \\
\mathcal{R}_{4}=\{\mathrm{d} \rightarrow \mathrm{c}\}
\end{array}\right\} \begin{aligned}
& \operatorname{plus}(\text { zero }, n) \rightarrow n \\
& \mathcal{R}_{2}=\left\{\begin{array}{c}
\mathcal{R}_{5}=\{\mathrm{c} \rightarrow \mathrm{~d}\} \\
\operatorname{plus}(\operatorname{succ}(m), n) \rightarrow \operatorname{succ}(\operatorname{plus}(m, n)) \\
\operatorname{pred}(\operatorname{succ}(n)) \rightarrow n
\end{array}\right\}
\end{aligned} \begin{aligned}
& \mathcal{R}_{6}=\{\mathrm{f}(\mathrm{f}(x)) \rightarrow x\}
\end{aligned}
$$

duplicate checker is expected to compute partition by \approx :

$$
\mathfrak{R} / \approx=\left\{\left\{\mathcal{R}_{1}, \mathcal{R}_{2}\right\},\left\{\mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}\right\},\left\{\mathcal{R}_{6}\right\}\right\}
$$

Duplicate Check

Definition (definition of duplicates)

- $\mathcal{R} \doteq \mathcal{S}$ if \mathcal{R} and \mathcal{S} are same modulo variable renaming
- $\mathcal{R} \approx \mathcal{S}$ if $\mathcal{R}^{\theta} \doteq \mathcal{S}$ for some renaming θ for function symbols

Example

$$
\left\{\begin{aligned}
\operatorname{plus}(\text { zero }, n) & \rightarrow n \\
\operatorname{plus}(\operatorname{succ}(m), n) & \rightarrow \operatorname{succ}(\operatorname{plus}(m, n)) \\
\operatorname{pred}(\operatorname{succ}(n)) & \rightarrow n
\end{aligned}\right\} \approx\left\{\begin{aligned}
+(0, x) & \rightarrow x \\
+(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(+(x, y)) \\
\mathrm{p}(\mathrm{~s}(x)) & \rightarrow x
\end{aligned}\right\}
$$

$$
\text { because of renaming } \theta:\left\{\begin{array}{l}
\text { plus }^{\theta}=+ \\
\operatorname{succ}^{\theta}=\mathrm{s} \\
\operatorname{pred}^{\theta}=\mathrm{p}
\end{array}\right\}
$$

Q. how to find it? A. reducing problem to equality constraint

Encoding Equivalence of Rules

Example

$$
\begin{aligned}
& =\begin{array}{c}
\text { plus } \left.^{\theta}\left(\text { zero }^{\theta}, x_{1}\right) \rightarrow \begin{array}{c}
x_{1} \\
+\left(\mathrm{s}\left(x_{1}\right), x_{2}\right)
\end{array}\right) \quad \mathrm{s}\left(+\left(x_{1}, x_{2}\right)\right.
\end{array} \Longleftrightarrow \bigwedge\left\{\begin{array}{c}
\text { plus }^{\theta}=+ \\
\perp
\end{array}\right\} \\
& \begin{array}{r}
\mathrm{f}^{\theta}\left(x_{1}\right) \rightarrow x_{2} \text { if } \mathrm{g}^{\theta}\left(x_{1}\right) \rightarrow x_{2} \\
=\mathrm{g}\left(x_{1}\right) \rightarrow x_{2} \text { if } \mathrm{f}\left(x_{1}\right) \rightarrow x_{2}
\end{array} \Longleftrightarrow \bigwedge\left\{\begin{array}{l}
\mathrm{f}^{\theta}=\mathrm{g} \\
\mathrm{~g}^{\theta}=\mathrm{f}
\end{array}\right\}
\end{aligned}
$$

Fact
 $$
\mathcal{R} \subseteq \mathcal{S} \Longleftrightarrow \bigwedge_{\alpha \in \mathcal{R}} \bigvee_{\beta \in \mathcal{S}} \alpha=\beta \quad \text { and } \quad \mathcal{R}^{\theta}=\mathcal{S} \Longleftrightarrow \mathcal{R}^{\theta} \subseteq \mathcal{S} \wedge \mathcal{R}^{\theta} \supseteq \mathcal{S}
$$

Example

$$
\begin{gathered}
\left\{\begin{aligned}
\operatorname{plus}\left(\text { zero }, x_{1}\right) & \rightarrow x_{1} \\
\operatorname{plus}\left(\operatorname{succ}\left(x_{1}\right), x_{2}\right) & \rightarrow \operatorname{succ}\left(\operatorname{plus}\left(x_{1}, x_{2}\right)\right) \\
\operatorname{pred}\left(\operatorname{succ}\left(x_{1}\right)\right) & \rightarrow x_{1}
\end{aligned}\right\}^{\theta} \subseteq\left\{\begin{aligned}
+\left(0, x_{1}\right) & \rightarrow x_{1} \\
+\left(\mathrm{s}\left(x_{1}\right), x_{2}\right) & \rightarrow \mathrm{s}\left(+\left(x_{1}, x_{2}\right)\right) \\
\mathrm{p}\left(\mathrm{~s}\left(x_{1}\right)\right) & \rightarrow x_{1}
\end{aligned}\right\} \\
\Longleftrightarrow \bigwedge\left\{\begin{array}{l}
\left(\text { plus }^{\theta}=+\wedge \text { zero }^{\theta}=0\right) \vee \perp \vee \perp \\
\perp \vee\left(\text { plus }^{\theta}=+\wedge \operatorname{succ}^{\theta}=\mathrm{s}\right) \vee \perp \\
\perp \vee \perp \vee\left(\text { pred }^{\theta}=\mathrm{p} \wedge \text { succ }^{\theta}=\mathrm{s}\right)
\end{array}\right\}
\end{gathered}
$$

Encoding Equivalence of Signatures

$$
\begin{gathered}
\left\{\begin{array}{l}
(\text { plus, 2) } \\
(\text { succ, } 1) \\
(\text { pred, } 1)
\end{array}\right\}^{\theta} \subseteq\left\{\begin{array}{l}
(+, 2) \\
(\mathrm{s}, 1) \\
(\mathrm{p}, 1)
\end{array}\right\} \\
\Longleftrightarrow \bigwedge\left\{\begin{array}{llll}
\text { plus }^{\theta}=+ & \vee & \perp & \vee \\
\perp & \vee & \text { succ }^{\theta}=\mathrm{s} & \vee \\
\perp & \vee & \text { succ }^{\theta}=\mathrm{pred} \\
\perp & =\mathrm{s} & \vee & \text { pred }^{\theta}=\mathrm{p}
\end{array}\right\}
\end{gathered}
$$

Note

- equivalence of $(\mathcal{F}, \mathcal{R})$ and $(\mathcal{G}, \mathcal{S})$ is decided by solving $\mathcal{F}^{\theta}=\mathcal{G} \wedge \mathcal{R}^{\theta}=\mathcal{S}$

■ in same way, $\mathrm{CS}(\mathrm{C})$ TRSs and MSTRSs can be handled

Duplicate Check I

given $\left(\mathcal{F}_{1}, \mathcal{R}_{1}\right), \ldots,\left(\mathcal{F}_{n}, \mathcal{R}_{n}\right)$
union-find maintains equivalence on $\{1, \ldots, n\}$
for each (i, j) with $i<j$
if find $(i) \neq$ find (j)
if $\mathcal{F}_{i}^{\theta}=\mathcal{F}_{j}$ and $\mathcal{R}_{i}^{\theta} \doteq \mathcal{R}_{j}$ for some θ
takes 1 ms union (i, j)

Estimation of Runtime

if $|\mathfrak{R}|=1500$ then $\frac{1500 \times 1499}{2} \times 1 \mathrm{~ms} \approx 20 \mathrm{~min}$

Idea

use fingerprint function $\varphi: \varphi(\mathcal{R}) \neq \varphi(\mathcal{S}) \Longrightarrow \mathcal{R} \not \approx \mathcal{S}$

$$
\begin{aligned}
& \varphi(\mathcal{R}) \text { in Current Implementation }
\end{aligned}
$$

$$
\begin{aligned}
& \varphi(\mathcal{R})=\operatorname{concat}\left(\operatorname{sort}\left(\left[\begin{array}{c}
{[0,1,2,0,1,1,0,3,1,1],} \\
{[0,0,1,0],} \\
{[0,0,1,0]}
\end{array}\right]\right)\right) \\
& =[0,0,1,0,0,0,1,0,0,1,2,0,1,1,0,3,1,1]
\end{aligned}
$$

Theorem

$\varphi(\mathcal{R}) \neq \varphi(\mathcal{S}) \Longrightarrow \mathcal{R} \not \approx \mathcal{S} \quad$ if \mathcal{R} and \mathcal{S} are variant-free (why?)
Duplicate Check

Duplicate Check II

given $\left(\mathcal{F}_{1}, \mathcal{R}_{1}\right), \ldots,\left(\mathcal{F}_{n}, \mathcal{R}_{n}\right)$
union-find maintains equivalence on $\{1, \ldots, n\}$
for each i
compute variant-free version \mathcal{R}_{i}^{\prime} of \mathcal{R}_{i}

$$
\vec{v}_{i}=\varphi\left(\mathcal{R}_{i}^{\prime}\right)
$$

for each (i, j) with $i<j$
if find $(i) \neq$ find (j)

$$
\begin{array}{lr}
\text { if } \vec{v}_{i}=\vec{v}_{j} & \text { takes }<0.01 \mathrm{~ms} \\
\text { if } \mathcal{F}_{i}^{\theta}=\mathcal{F}_{j} \text { and } \mathcal{R}_{i}^{\theta} \doteq \mathcal{R}_{j} \text { for some } \theta & \text { takes } 1 \mathrm{~ms} \\
\quad \text { union }(i, j) &
\end{array}
$$

Experimental Results

- Core i5-1340P @ 1.30 GHz
- Z3 for finding renaming
- ARI contains 1218 (CS)(C)TRSs

DB	problems	duplicates	SMT calls	time (sec)
TRSs in COPS	577	13	16	$\mathbf{0 . 1 2}$
ARI	1503	0	8	$\mathbf{0 . 3 7}$

Remark

some TRS in COPS is not variant-free; what about ARI?
Duplicate Check

Future Work I: MSTRSs

$$
\begin{aligned}
& \{a: A, b: B\}^{\theta} \approx\{0: C, 1: D\} \\
\Longleftrightarrow & \wedge\left\{\begin{array}{l}
\left(a^{\theta}=0 \wedge A^{\theta}=C\right) \vee\left(a^{\theta}=1 \wedge A^{\theta}=D\right) \\
\left(b^{\theta}=0 \wedge B^{\theta}=C\right) \vee\left(b^{\theta}=1 \wedge B^{\theta}=D\right)
\end{array}\right\}
\end{aligned}
$$

Future Work II: COM

indexes can be swapped
(format TRS : number 2)
(fun f 1)
(rule (f x) x :index 1)
(rule (f (f x)) x :index 2)
is equivalent to
(format TRS : number 2)
(fun g 1)
(rule (g x) $x \quad$ index 2)
(rule (g (g x)) x :index 1)
arguments can be swapped
(format TRS :problem infeasibility)
(fun a 0)
(fun b 0)
(infeasibility? (= a a) (= a b))
is equivalent to
(format TRS :problem infeasibility)
(fun a 0)
(fun b 0)
(infeasibility? (= a b) (= a a))
probably infeasibility problems are generated by tools
\qquad

Future Work III: INF

Future Work IV

- duplicate check for LCTRSs (no idea about notion of equivalence)

■ how does termCOMP gourp manage problems in TPDB?

- is duplicate check in P? or NP-complete?
- how to verify correctness of duplicate checkers?
in COPS, some CTRS was wrongly tagged

Thanks for Your Attention!

