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Narrowing
Overview:
• Narrowing generalizes rewriting in the sense that matching is replaced by

unification.
• Symbolically represents a rewriting relation between terms as a narrowing relation

between more general terms.
Definition
A term t is narrowable into a term t ′ if there exist a non-variable position p in t, a
variant ℓ→ r of a rewrite rule in R, and a substitution σ such that
• σ is a most general unifier of t|p and ℓ,
• t ′ = t[r ]pσ.
• We write t ⇝[p,ℓ→r ,σ] t ′ or simply t ⇝σ,R t ′ .
• Also, we write t ⇝∗

σ,R t ′ if there exists a narrowing derivation
t = t1 ⇝σ1,R t2 ⇝σ2,R · · ·⇝σn−1,R tn = t ′ such that σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If
n = 1, then σ = ε. 2

Narrowing

Example

• Given a rewrite system R = {f (a, b)→ d}, can we rewrite term f (x , y)?
• Can we narrow f (x , y)?

Lifting Lemma (Hullot 1980, MH 1994)

Let R be a TRS. Suppose we have terms s and t, a normalized substitution θ and a set
of variables V such that V(s)∪Dθ ⊆ V and t = sθ. If t →∗

R t ′, then there exist a term
s ′ and substitutions θ′, σ such that
• s ⇝∗

σ,R s ′,
• s ′θ′ = t ′,
• θ′ ◦ σ = θ[V ],
• θ′ is normalized.
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E-unifiability, reachability, and infeasibility

E-unifiability

• Equational unification (or E -unification) is concerned with making terms equivalent
w.r.t. an equational theory E .
• Two terms s and t are E -unifiable if there exists a substitution σ such that

sσ ≈E tσ.
• For example, consider E = {f (x , 0) ≈ x}. Then, two terms f (y , z) and 0 are not

syntactically unifiable, but they are E -unifiable using the substitution
θ := {y 7→ 0, z 7→ 0} because f (y , z)θ = f (0, 0) ≈E 0.
• Given a set of equations E and two terms s and t, it is generally undecidable

whether there exists a substitution σ such that sσ ≈E tσ holds or not. It is a
natural question to ask when this E -unifiability problem is decidable.
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E-unifiability, reachability, and infeasibility

Reachability and infeasibility

• One of the fundamental problems in term rewriting systems.
• (Original form) Given a TRS R and a source term s, does s reach to t by a

rewriting sequence, written s →∗
R t?

• (Generalization) This problem has the following generalization for s and t
containing variables: Given a TRS R and two terms s and t, the reachability
problem is stated as follows: is there a substitution σ such that sσ →∗

R tσ?
• We say that the above reachability problem is satisfiable if there is such a

substitution σ.
• If no such a substitution exists, then this problem is said to be infeasible.
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Equational Terms (or goals)

Equational Terms

• Add a fresh binary function symbol ≈? and a fresh constant ⊤ to the set of
function symbols and assume that R contains the rewrite rule x ≈? x → ⊤.
• Equational terms are the terms of the following form s ≈? t, where s and t do not

contain any occurrences of ≈? and ⊤.
• We may use the lifting lemma for equational terms because equational terms are

simply some specific types of terms.

Lemma (Hullot 1980, MH 1994)

s ≈? t ⇝∗
σ,R ⊤ implies sσ ≈? tσ →∗

R ⊤.

Lemma (Hullot 1980, MH 1994)

Given a TRS R, if s ≈? t ⇝∗
σ,R ⊤, then σ is an R-unifier of s and t. 6

Narrowing for E-unifiability

Lemma
• Given a TRS R, if there is no narrowing derivation s ≈? t ⇝∗

σ,R ⊤ for any
substitution σ, then there is no normal substitution θ satisfying sθ ≈? tθ →∗

R ⊤.

Lemma
• Given a semi-complete TRS R and assume that all narrowing derivations starting

from s ≈? t terminates. If there is no narrowing derivation s ≈? t ⇝∗
σ,R ⊤ for any

substitution σ, then s and t have no R-unifier.
• Proof idea: Assume that there is no narrowing derivation s ≈? t ⇝∗

σ,R ⊤ for any
substitution σ. Then, by the above lemma, there is no normal substitution θ
satisfying sθ ≈? tθ →∗

R ⊤. Now, suppose, towards a contradiction, that s and t
have an R-unifier. Then, there is some substitution τ such that sτ

∗←→R tτ . Since
R is semi-complete, there is a normal substitution τ ′ of τ such that sτ ′ ∗←→R tτ ′.
Now, we may infer that sτ ′ ≈? tτ ′ →∗

R ⊤, which is the required contradiction. 7



Narrowing for E-unifiability

Theorem
• Given a semi-complete TRS R, if all narrowing derivations starting from s ≈? t

terminates, then we can decide whether s ≈? t has an R-unifier or not.

Example

• Let E = {f (x , 0) ≈ g(x), g(b) ≈ c} and the unification problem f (x , y) ≈?
E c. A

rewrite system for E is R = {f (x , 0)→ g(x), g(b)→ c, x ≈? x → ⊤}, where the
rule x ≈? x → ⊤ is added. We rename the rules in R whenever necessary.
• First, find the mgu of f (x , y) and f (x1, 0) in f (x1, 0)→ g(x1), which yields

σ1 = {x 7→ x1, y 7→ 0}. Then, we have (f (x , y) ≈? c)⇝σ1 (g(x1) ≈? c).
• Find the mgu of g(x1) and g(b), yielding σ2 = {x1 7→ b}. Then, the narrowing step

(g(x1) ≈? c)⇝σ2 (c ≈? c) is applied. Next, c ≈? c ⇝σ3 ⊤ using x2 ≈? x2 → ⊤,
where σ3 = {x2 7→ c}. This reaches to ⊤, so the above E -unification problem is
solvable by an R-unifier σ3 ◦ σ2 ◦ σ1 = {x 7→ b, y 7→ 0, x1 7→ b, x2 7→ c}. 8

Multiset Narrowing

Multiset Narrowing

• Identical elements in a multiset can reach to different elements (or states).
• A multiset of terms may reach another multiset of terms using term rewriting.
• Adapts from the existing narrowing methods (in particular, MH1994) for multiset

setting. Multiset narrowing works on multisets of (ordinary) terms, multisets of
equational terms, and multisets of pairs of terms.
• It can also be used for multiple goals in the (traditional) reachability and

E -unification problems.
• Multiset narrowing is based on multiset rewriting.

Multiset Reachability Analysis

• Given a multiset of terms M = {t1, . . . , tn}, does it reach to the target multiset of
terms M ′ = {t ′

1, . . . , t ′
n} using a term rewriting system R? 9

Multiset Narrowing

Multiset Reachability Analysis (more general)

• Given a multiset of terms M = {t1, . . . , tn}, is there a substitution σ such that
Mσ := {t1σ, . . . , tnσ} reaches to the target multiset of terms M ′ = {t ′

1, . . . , t ′
n}

using a term rewriting system R?

Reachability Analysis by Multisets

• Given a rewrite system R and pairs of terms (s1, t1), . . . , (sn, tn), is there a
substitution σ exists such that s1σ →∗

R t1σ ∧ · · · ∧ snσ →∗
R tnσ. Here, the

reachability problem is represented by the multiset {(sk , tk) | 1 ≤ k ≤ n}.
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Multiset Narrowing

Multiset rewriting on multisets of (equational) terms

Let S and T be multisets of (equational) terms. We write S →[R,M1] T if there exists
an (equational) term s ∈ S such that s →R t and T = (S − {s}) ∪ {t}.

Multiset narrowing on multisets of (equational) terms

• A multiset of (equational) terms S is narrowable into a multiset of (equational)
terms T if there exist an (equational) term s ∈ S and a substitution σ such that
• s ⇝σ,R t,
• T = ((S − {s})σ ∪ {t}.

Then, we write S ⇝σ,R,M1 T . Also, we write S ⇝∗
σ,R,M1

S ′ if there exists a
narrowing derivation S = S1 ⇝σ1,R,M1 S2 ⇝σ2,R,M1 · · ·⇝σn−1,R,M1 Sn = S ′ such
that σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If n = 1, then σ = ε.
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Multiset Narrowing

Lifting Lemma for Multiset Narrowing
Let R be a TRS. Suppose we have two multisets of (equational) terms S and T , a
normalized substitution θ and a set of variables V such that V(S) ∪ Dθ ⊆ V and
T = Sθ. If T →∗

[R,M1] T ′, then there exist a multiset of (equational) terms S ′ and
substitutions θ′, σ such that
• S ⇝∗

σ,R,M1
S ′,

• S ′θ′ = T ′,
• θ′ ◦ σ = θ[V ],
• θ′ is normalized.

Remarks
Looks very similar to the lifting lemma for ordinary terms. This lifting lemma holds for
multisets of both ordinary and equational terms.
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Multiset Narrowing

Soundness of Multiset Narrowing w.r.t. Multiset Reachability

• If there exists a multiset narrowing derivation from S to S ′ with narrowing
substitution σ and there is a matching substitution θ such that S ′θ = G , then a
multist S is reachable to the target G using substitution θ ◦ σ.
• Starting with the source multiset S, we may use a multiset narrowing tree to find

such S ′ that can be matchable to the target G .

Weak Completeness of Multiset Narrowing w.r.t. Multiset Reachability

• If there is no multiset narrowing derivation from S to S ′ that can be matchable to
G , then there is no normal substitution σ, which allows Sσ to reach G .
• Inherited from the weak completeness of reachability analysis using narrowing
• For strong completeness, some constraints might be needed.
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An Example of Multiset Narrowing for Multiset Reachability

Example

• Consider the source S = {f (x , y), f (x , y)} and target G = {c, d} with (renamed)
rewrite system R = {f (a, b)→ d , f (a, z1)→ g(z1), f (z2, a)→ d , g(a)→ c}.
• If we simply use the rule f (a, b)→ d , then Sσ is not reachable to G .
• Multiset narrowing starts with S = {f (x , y), f (x , y)} and narrows into

S1 = {g(z1), f (a, z1)} using the rule f (a, z1)→ g(z1) with substitution
σ1 = {x 7→ a, y 7→ z1}. Then, it narrows into S2 = {c, f (a, a)} using the rule
g(a)→ c with substitution σ2 = {z1 7→ a}. Finally, it narrows into S3 = {c, d}
using the rule f (z2, a)→ d , with substitution σ3 = {z2 7→ a}, which allows Sσ to
reach G using substitution σ = σ3 ◦ σ2 ◦ σ1 = {x 7→ a, y 7→ a, z1 7→ a, z2 7→ a}.

14

Multiset Narrowing

Weak Completeness Example

• Given R = {a→ b, a→ c, g(f (b), f (c))→ a}, consider the reachability problem
from g(f (x), f (x)) to a. (For multiset reachability, consider the source multiset
{g(f (x), f (x))} to the target multiset {a}.) The problem is satisfiable using
substitution {x 7→ a} (i.e., g(f (a), f (a)) →R g(f (b), f (a)) →R g(f (b), f (c))
→R a), but we may not apply a narrowing (or multiset narrowing) step from
g(f (x), f (x)) nor it is matchable with a.

Multiset Narrowing using Equational Terms [Strong completeness using strongly
irreducibility condition]

Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of
equational terms, where each tk , 1 ≤ k ≤ n, is a strongly irreducible term. If all multiset
narrowing derivations starting from S terminate, then we can decide whether the (usual)
reachability problem represented by S is satisfiable or not (i.e., infeasible). 15



Multiset Narrowing for (usual) Reachability Analysis (Type 2)

Multiset Rewriting (Adapted from MT 2007)

• Considering multisets of pairs of terms instead of considering multisets of terms
• Let S and T be multisets of the pairs of terms. We write S →[R,M2] T if there is a

pair of terms (s, t) ∈ S such that s →R u and T = (S − {(s, t)}) ∪ {(u, t)}.

Multiset Narrowing (Adapted from MT 2007)

A multiset of pairs of terms S is narrowable into a multiset of pairs of terms T if there
exists a pair of terms (s, t) in S and a substitution σ such that
• s ⇝σ,R u, and
• T = (S − {(s, t)})σ ∪ {(u, tσ)}.

Then, we write S ⇝σ,R,M2 T . Also, we write S ⇝∗
σ,R,M2

S ′ if there exists a narrowing
derivation S = S1 ⇝σ1,R,M2 S2 ⇝σ2,R,M2 · · ·⇝σn−1,R,M2 Sn = S ′ such that
σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If n = 1, then σ = ε. 16

Intuition of →[R,M2] and ⇝σ,R,M2

• S →[R,M2] T if T is obtained by replacing one pair of elements (s, t) in S with
(u, t) using s →R u. Only the first element in a pair can be rewritten by R, while
the second element serves as a target and is intact for →[R,M2]-steps.
• S ⇝σ,R,M2 T if T is obtained by replacing one pair of elements (s, t) in S with

(u, tσ) from s ⇝σ,R u and then applying the narrowing substitution to the
remaining multiset S − {(s, t)}.

Definitions
• A multiset of pair of terms {(sk , tk) | 1 ≤ k ≤ n} is syntactically unifiable with a

substitution θ if skθ = tkθ for all 1 ≤ k ≤ n. In particular, it is trivially unifiable if
sk = tk for all 1 ≤ k ≤ n.
• A substitution τ is a solution of the reachability problem represented by a multiset

S = {(s1, t1), . . . , (sn, tn)} if s1τ →∗
R t1τ ∧ · · · ∧ snτ →∗

R tnτ .
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Multiset Narrowing

Proposition
Let R be a TRS and S = {(s1, t1), . . . , (sn, tn)} be a multiset of pair of terms. If
S ⇝∗

σ,R,M2
S ′ and S ′ is syntactically unifiable with θ, then θ ◦ σ is a solution of the

reachability problem represented by S = {(s1, t1), . . . , (sn, tn)}.

Remarks and comparison

• Multiset narrowing for multisets of (ordinary) terms: suitable for multiset
reachability analysis
• Multiset narrowing for multisets of equational terms: suitable for E -unifiability. For

reachability analysis, it may obtain the strong completeness at the price of the
strongly irreducibility condition of the right-hand sides, etc.
• Multiset narrowing for multisets of pairs of equational terms: suitable for

reachability analysis. However, it does not alone provide the strong completeness of
the reachability problem consisting of multiple goals. 18

Formalization in Isabelle/HOL

Formalization of narrowing
Formalization of narrowing is done using inductive_set in Isabelle. Here, s narrows into
t iff (s, t, δ) ∈ narrowing_step. (Here, R is added as a parameter of narrowing_step by
locale in isabelle.)

inductive_set narrowing_step where
”(t = (replace_at s p (snd rl)) · δ ∧ ω • rl ∈ R ∧ (vars_term s ∩ vars_rule rl = {}) ∧ p ∈

fun_poss s ∧mgu (s|p) (fst rl) = Some δ)⇒ (s, t, δ) ∈ narrowing_step"

Remarks
Above, the renaming ω is applied to the rule rl , expressed by ω • rl , so that no variable
shares between s and rl . This corresponds to a variant of a rewrite rule l → r in the
Narrowing definition, where l → r is denoted here by rl . For renaming, we use the
earlier formalization of permutation for renaming in IsaFoR.
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Formalization in Isabelle/HOL

Formalization of narrowing derivation
The following formalizes whether a narrowing derivation s ⇝∗

σ t holds or not, which
cannot simply use the reflexive and transitive closure of the relation derived from
narrowing_step because σ should be combined for the narrowing steps from s and t.

definition narrowing_derivation where
"narrowing_derivation s s ′ σ ←→ (∃n. (∃f τ. f 0 = s ∧ f n = s ′ ∧ (∀i < n.

((f i), (f (Suc i)), (τ i)) ∈ narrowing_step) ∧ (if n = 0 then σ = Var else σ =
compose (map (λi .(τ i))[0.. < n]))))"

Remarks
Above, s ⇝∗

σ t is true if there are functions f and τ forming the chains of narrowing
steps and their corresponding narrowing substitutions, where the end points of the chain
formed by f are s and s ′, respectively, and σ is the composition of all substitutions of
the chain formed by the function τ . (Here, if the length of the chain is 0, then σ is ε.) 20

Formalization in Isabelle/HOL

Formalization of Equational Terms
The following two function symbols are introduced.

consts DOTEQ :: "′f " (" .=")
consts TOP :: "′f " ("⊤")

The binary function symbol .= corresponds to ≈?. In the following, a term t is a
wf_equational_term if t is either the constant ⊤ (i.e., Fun ⊤ [ ]) or it is an equational
term of the form u ≈? v , where the binary symbol .= and the constant ⊤ do not occur
in any of u and v .

definition wf_equational_term where
“wf _equational_term t ←→ ((t = Fun ⊤ [ ]) ∨ (∃u v . t = Fun .= [u :: (′f ,′ v) term, v ::

(′f ,′ v) term] ∧ ( .=, 2) /∈ funas_term u ∧ ( .=, 2) /∈ funas_term v) ∧ (⊤, 0) /∈ funas_term u ∧
(⊤, 0) /∈ funas_term v))"
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Formalization in Isabelle/HOL

Locale for Equational Narrowing
We use the Isabelle’s locale to specify the constraints for these new symbols in
Equational_Narrowing.thy.

locale equational_narrowing = narrowing R for R::"(′f ,′ v :: infinite) trs" +
fixes R′ :: "(′f, ′v:: infinite) trs"

and R :: "(′f, ′v:: infinite) trs"
and F :: "′f sig"
and D :: "′f sig"

assumes "wf _trs R"
and "R = R′ ∪ {(Fun .= [Var x , Var x ], Fun ⊤ [ ])}"
and "funas_trs R′ ⊆ F"
and "D = {( .=, 2), (⊤, 0)}"
and "D ∩ F = {}"
. . .
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Formalization in Isabelle/HOL

Formalization of Lifting Lemma in Equational Narrowing

lemma lifting_lemma:
fixes V ::"(′v :: infinite) set" and S ::"(′f ,′ v)term" and T ::"(′f ,′ v)term"

assumes "normal_subst R θ"
and "wf _equational_term S"
and "T = S · θ"
and "vars_term S ∪ subst_domain θ ⊆ V"
and "(T , T ′) ∈ rstep R)∗"
and "finite V"

shows "∃σ θ′ S ′.narrowing_derivation S S ′ σ ∧ T ′ = S ′ · θ′ ∧ wf _equational_term S ′∧
normal_subst R θ′ ∧ (σ ◦s θ′) |S V = θ |S V"
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Formalization in Isabelle/HOL

Formalization of Multiset Rewriting →[R,M1]

• S →[R,M1] T iff (S, T ) ∈ multiset_reduction_step
inductive_set multiset_reduction_step where

"s ∈# S ∧ T = (S − {#s#}+ {#t#}) ∧ (s, t) ∈ rstep R ⇒ (S, T ) ∈
multiset_reduction_step"

Formalization of Multiset Narrowing ⇝σ,R,M1

• S ⇝σ,R,M1 T iff (S, T , σ) ∈ multiset_narrowing_step.
• inductive_set multiset_narrowing_step where

"(s, t)∈# S ∧ T = (subst_term_multiset σ (S − {#s#}) + {#t#}) ∧ (s, t, σ) ∈
narrowing_step ⇒ (S, T , σ) ∈ multiset_narrowing_step"
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Formalization in Isabelle/HOL

Formalization of Multiset Rewriting →[R,M2]

• S →[R,M2] T iff (S, T ) ∈ multiset_pair_reduction_step. (Here, R is implicitly
included as a parameter of multiset_pair_reduction_step in the locale.)
• inductive_set multiset_pair_reduction_step where

"(s, t) ∈# S ∧ T = (S − {#(s, t)#}+ {#(u, t)#}) ∧ (s, u) ∈ rstep R ⇒ (S, T ) ∈
multiset_pair_reduction_step"

Formalization of Multiset Narrowing ⇝σ,R,M2

• S ⇝σ,R,M2 T iff (S, T , σ) ∈ multiset_pair_narrowing_step.
• inductive_set multiset_pair_narrowing_step where

"(s, t)∈# S∧T = (subst_pairs_multiset σ (S−{#(s, t)#})+{#(u, t ·σ)#})∧(s, u, σ) ∈
narrowing_step ⇒ (S, T , σ) ∈ multiset_pair_narrowing_step"
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Formalization of the completeness of E -unifiability

theorem narrowing_based_E_unifiability:
assumes "semi_complete (rstep R)"

and funas_rule (s, t) ⊆ F
shows "narrowing_derivation_reaches_to_success (s, t)⇒ E_unifiable (s, t)"

"narrowing_derivation_not_reaches_to_success (s, t)⇒ not_E_unifiable (s, t)"

Weak completeness of multiset narrowing w.r.t. multiset reachability
The following isabelle theorem states the weak completeness of multiset narrowing w.r.t.
multiset reachability.

theorem multiset_narrowing_based_reachability_weak_completeness:
"multiset_narrowing_reachable_from_to S G −→

(∃θ.(subst_term_multiset θ S, G) ∈ (multiset_reduction_step)∗)
"multiset_narrowing_not_reachable_from_to S G −→

¬(∃θ.normal_subst R θ ∧ (subst_term_multiset θ S, G) ∈ (multiset_reduction_step)∗) 26

Formalization of strong completeness of reachability analysis

theorem multiset_narrowing_based_reachability:
assumes "semi_complete (rstep R)"

and funas_trs (set C) ⊆ F"
and ∀ (u, v) ∈ set C . strongly_irreducible_term R v"

shows "multiset_narrowing_derivation_reaches_to_success C =⇒ reachability C"
"multiset_narrowing_derivations_not_reaches_to_success C =⇒ infeasibility C"

Remarks
• The strongly irreducibility condition of C is imposed as an assumption:
∀ (u, v) ∈ set C . strongly_irreducible_term R v .
• The reachability problem represented by a list C (consisting of pairs of terms

representing the reachability goals) is first converted into a multiset consisting of
equational terms in both the above multiset_narrowing_derivation_...
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Thank you!

Dohan Kim
ARI Final Meeting, Nagoya, Japan (Feb. 20-23, 2024)
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