## universität innsbruck



An Isabelle/HOL formalization of narrowing and its applications to *E*-unifiability, reachability and infeasibility

Dohan Kim

ARI Final Meeting, Nagoya, Japan (Feb. 20-23, 2024)

# Narrowing

### Overview:

- Narrowing generalizes rewriting in the sense that matching is replaced by unification.
- Symbolically represents a rewriting relation between terms as a narrowing relation between more general terms.

### Definition

A term t is *narrowable* into a term t' if there exist a non-variable position p in t, a variant  $\ell \to r$  of a rewrite rule in  $\mathcal{R}$ , and a substitution  $\sigma$  such that

- $\sigma$  is a most general unifier of  $t|_p$  and  $\ell$ ,
- $t' = t[r]_p \sigma$ .
- We write  $t \leadsto_{[p,\ell \to r,\sigma]} t'$  or simply  $t \leadsto_{\sigma,\mathcal{R}} t'$ .
- Also, we write  $t \leadsto_{\sigma,\mathcal{R}}^* t'$  if there exists a narrowing derivation  $t = t_1 \leadsto_{\sigma_1,\mathcal{R}} t_2 \leadsto_{\sigma_2,\mathcal{R}} \cdots \leadsto_{\sigma_{n-1},\mathcal{R}} t_n = t'$  such that  $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$ . If n = 1, then  $\sigma = \varepsilon$ .

### Contents

- 1. Narrowing
- 2. E-unifiability, Reachability and Infeasibility
- 3. Narrowing for E-unifiability
- 4. Multiset Narrowing
- 5. Multiset Narrowing for Multiset Reachability Analysis
- 6. Multiset Narrowing for (usual) Reachability and Infeasibility
- 7. Formalization in Isabelle/HOL

# Narrowing

## **Example**

- Given a rewrite system  $\mathcal{R} = \{f(a,b) \to d\}$ , can we rewrite term f(x,y)?
- Can we narrow f(x, y)?

## Lifting Lemma (Hullot 1980, MH 1994)

Let  $\mathcal R$  be a TRS. Suppose we have terms s and t, a normalized substitution  $\theta$  and a set of variables V such that  $\mathcal V(s)\cup\mathcal D\theta\subseteq V$  and  $t=s\theta$ . If  $t\to_{\mathcal R}^*t'$ , then there exist a term s' and substitutions  $\theta'$ ,  $\sigma$  such that

- $s \rightsquigarrow_{\sigma, \mathcal{R}}^* s'$ ,
- $s'\theta' = t'$ ,
- $\theta' \circ \sigma = \theta[V]$ ,
- $\theta'$  is normalized.

1

# E-unifiability, reachability, and infeasibility

## E-unifiability

- Equational unification (or *E*-unification) is concerned with making terms equivalent w.r.t. an equational theory *E*.
- Two terms s and t are E-unifiable if there exists a substitution  $\sigma$  such that  $s\sigma \approx_F t\sigma$ .
- For example, consider  $E = \{f(x,0) \approx x\}$ . Then, two terms f(y,z) and 0 are not syntactically unifiable, but they are E-unifiable using the substitution  $\theta := \{y \mapsto 0, z \mapsto 0\}$  because  $f(y,z)\theta = f(0,0) \approx_E 0$ .
- Given a set of equations E and two terms s and t, it is generally undecidable whether there exists a substitution  $\sigma$  such that  $s\sigma\approx_E t\sigma$  holds or not. It is a natural question to ask when this E-unifiability problem is decidable.

# Equational Terms (or goals)

## **Equational Terms**

- Add a fresh binary function symbol  $\approx$ ? and a fresh constant  $\top$  to the set of function symbols and assume that  $\mathcal{R}$  contains the rewrite rule  $x \approx$ ?  $x \to \top$ .
- Equational terms are the terms of the following form  $s \approx^? t$ , where s and t do not contain any occurrences of  $\approx^?$  and  $\top$ .
- We may use the lifting lemma for equational terms because equational terms are simply some specific types of terms.

# Lemma (Hullot 1980, MH 1994)

 $s \approx^{?} t \rightsquigarrow_{\sigma, \mathcal{R}}^{*} \top \text{ implies } s\sigma \approx^{?} t\sigma \rightarrow_{\mathcal{R}}^{*} \top.$ 

## Lemma (Hullot 1980, MH 1994)

Given a TRS  $\mathcal{R}$ , if  $s \approx^? t \rightsquigarrow_{\sigma \mathcal{R}}^* \top$ , then  $\sigma$  is an  $\mathcal{R}$ -unifier of s and t.

# E-unifiability, reachability, and infeasibility

### Reachability and infeasibility

- One of the fundamental problems in term rewriting systems.
- (Original form) Given a TRS  $\mathcal{R}$  and a source term s, does s reach to t by a rewriting sequence, written  $s \to_{\mathcal{R}}^* t$ ?
- (Generalization) This problem has the following generalization for s and t containing variables: Given a TRS  $\mathcal{R}$  and two terms s and t, the reachability problem is stated as follows: is there a substitution  $\sigma$  such that  $s\sigma \to_{\mathcal{R}}^* t\sigma$ ?
- We say that the above reachability problem is *satisfiable* if there is such a substitution  $\sigma$ .
- If no such a substitution exists, then this problem is said to be *infeasible*.

# Narrowing for E-unifiability

### Lemma

• Given a TRS  $\mathcal{R}$ , if there is no narrowing derivation  $s \approx^? t \leadsto_{\sigma, \mathcal{R}}^* \top$  for any substitution  $\sigma$ , then there is no normal substitution  $\theta$  satisfying  $s\theta \approx^? t\theta \to_{\mathcal{R}}^* \top$ .

### Lemma

- Given a semi-complete TRS  $\mathcal R$  and assume that all narrowing derivations starting from  $s \approx^? t$  terminates. If there is no narrowing derivation  $s \approx^? t \rightsquigarrow_{\sigma,\mathcal R}^* \top$  for any substitution  $\sigma$ , then s and t have no R-unifier.
- Proof idea: Assume that there is no narrowing derivation  $s \approx^? t \rightsquigarrow_{\sigma,\mathcal{R}}^* \top$  for any substitution  $\sigma$ . Then, by the above lemma, there is no normal substitution  $\theta$  satisfying  $s\theta \approx^? t\theta \rightarrow_{\mathcal{R}}^* \top$ . Now, suppose, towards a contradiction, that s and t have an  $\mathcal{R}$ -unifier. Then, there is some substitution  $\tau$  such that  $s\tau \stackrel{*}{\hookleftarrow}_{\mathcal{R}} t\tau$ . Since  $\mathcal{R}$  is semi-complete, there is a normal substitution  $\tau'$  of  $\tau$  such that  $s\tau' \stackrel{*}{\hookleftarrow}_{\mathcal{R}} t\tau'$ . Now, we may infer that  $s\tau' \approx^? t\tau' \rightarrow_{\mathcal{R}}^* \top$ , which is the required contradiction.

# Narrowing for E-unifiability

### Theorem

• Given a semi-complete TRS  $\mathcal{R}$ , if all narrowing derivations starting from  $s \approx^? t$  terminates, then we can decide whether  $s \approx^? t$  has an  $\mathcal{R}$ -unifier or not.

### **Example**

- Let  $E = \{f(x,0) \approx g(x), g(b) \approx c\}$  and the unification problem  $f(x,y) \approx_E^? c$ . A rewrite system for E is  $\mathcal{R} = \{f(x,0) \to g(x), g(b) \to c, x \approx^? x \to \top\}$ , where the rule  $x \approx^? x \to \top$  is added. We rename the rules in  $\mathcal{R}$  whenever necessary.
- First, find the mgu of f(x,y) and  $f(x_1,0)$  in  $f(x_1,0) \rightarrow g(x_1)$ , which yields  $\sigma_1 = \{x \mapsto x_1, y \mapsto 0\}$ . Then, we have  $(f(x,y) \approx^? c) \leadsto_{\sigma_1} (g(x_1) \approx^? c)$ .
- Find the mgu of  $g(x_1)$  and g(b), yielding  $\sigma_2 = \{x_1 \mapsto b\}$ . Then, the narrowing step  $(g(x_1) \approx^? c) \leadsto_{\sigma_2} (c \approx^? c)$  is applied. Next,  $c \approx^? c \leadsto_{\sigma_3} \top$  using  $x_2 \approx^? x_2 \to \top$ , where  $\sigma_3 = \{x_2 \mapsto c\}$ . This reaches to  $\top$ , so the above *E*-unification problem is solvable by an  $\mathcal{R}$ -unifier  $\sigma_3 \circ \sigma_2 \circ \sigma_1 = \{x \mapsto b, y \mapsto 0, x_1 \mapsto b, x_2 \mapsto c\}$ .

# Multiset Narrowing

## Multiset Reachability Analysis (more general)

• Given a multiset of terms  $M = \{t_1, \ldots, t_n\}$ , is there a substitution  $\sigma$  such that  $M\sigma := \{t_1\sigma, \ldots, t_n\sigma\}$  reaches to the target multiset of terms  $M' = \{t'_1, \ldots, t'_n\}$  using a term rewriting system  $\mathcal{R}$ ?

## Reachability Analysis by Multisets

• Given a rewrite system  $\mathcal{R}$  and pairs of terms  $(s_1, t_1), \ldots, (s_n, t_n)$ , is there a substitution  $\sigma$  exists such that  $s_1 \sigma \to_{\mathcal{R}}^* t_1 \sigma \wedge \cdots \wedge s_n \sigma \to_{\mathcal{R}}^* t_n \sigma$ . Here, the reachability problem is represented by the multiset  $\{(s_k, t_k) \mid 1 \leq k \leq n\}$ .

# Multiset Narrowing

### **Multiset Narrowing**

- Identical elements in a multiset can reach to different elements (or states).
- A multiset of terms may reach another multiset of terms using term rewriting.
- Adapts from the existing narrowing methods (in particular, MH1994) for multiset setting. Multiset narrowing works on multisets of (ordinary) terms, multisets of equational terms, and multisets of pairs of terms.
- It can also be used for multiple goals in the (traditional) reachability and *E*-unification problems.
- Multiset narrowing is based on multiset rewriting.

### Multiset Reachability Analysis

• Given a multiset of terms  $M = \{t_1, \dots, t_n\}$ , does it reach to the target multiset of terms  $M' = \{t'_1, \dots, t'_n\}$  using a term rewriting system  $\mathcal{R}$ ?

# Multiset Narrowing

## Multiset rewriting on multisets of (equational) terms

Let S and T be multisets of (equational) terms. We write  $S \to_{[\mathcal{R}, M_1]} T$  if there exists an (equational) term  $s \in S$  such that  $s \to_{\mathcal{R}} t$  and  $T = (S - \{s\}) \cup \{t\}$ .

## Multiset narrowing on multisets of (equational) terms

- A multiset of (equational) terms S is narrowable into a multiset of (equational) terms T if there exist an (equational) term  $s \in S$  and a substitution  $\sigma$  such that
  - $s \leadsto_{\sigma, \mathcal{R}} t$ , •  $T = ((S - \{s\})\sigma \cup \{t\})$ .

Then, we write  $S \leadsto_{\sigma,\mathcal{R},M_1} T$ . Also, we write  $S \leadsto_{\sigma,\mathcal{R},M_1}^* S'$  if there exists a narrowing derivation  $S = S_1 \leadsto_{\sigma_1,\mathcal{R},M_1} S_2 \leadsto_{\sigma_2,\mathcal{R},M_1} \cdots \leadsto_{\sigma_{n-1},\mathcal{R},M_1} S_n = S'$  such that  $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$ . If n = 1, then  $\sigma = \varepsilon$ .

# Multiset Narrowing

### Lifting Lemma for Multiset Narrowing

Let  $\mathcal R$  be a TRS. Suppose we have two multisets of (equational) terms S and T, a normalized substitution  $\theta$  and a set of variables V such that  $\mathcal V(S)\cup\mathcal D\theta\subseteq V$  and  $T=S\theta$ . If  $T\to_{[\mathcal R,M_1]}^*T'$ , then there exist a multiset of (equational) terms S' and substitutions  $\theta'$ ,  $\sigma$  such that

- $S \rightsquigarrow_{\sigma,\mathcal{R}_{0}M_{1}}^{*} S'$ ,
- $S'\theta' = T'$ ,
- $\theta' \circ \sigma = \theta[V]$ ,
- $\theta'$  is normalized.

### Remarks

Looks very similar to the lifting lemma for ordinary terms. This lifting lemma holds for multisets of both ordinary and equational terms.

# An Example of Multiset Narrowing for Multiset Reachability

## Example

- Consider the source  $S = \{f(x,y), f(x,y)\}$  and target  $G = \{c,d\}$  with (renamed) rewrite system  $\mathcal{R} = \{f(a,b) \rightarrow d, f(a,z_1) \rightarrow g(z_1), f(z_2,a) \rightarrow d, g(a) \rightarrow c\}$ .
- If we simply use the rule  $f(a,b) \to d$ , then  $S\sigma$  is not reachable to G.
- Multiset narrowing starts with  $S = \{f(x,y), f(x,y)\}$  and narrows into  $S_1 = \{g(z_1), f(a,z_1)\}$  using the rule  $f(a,z_1) \to g(z_1)$  with substitution  $\sigma_1 = \{x \mapsto a, y \mapsto z_1\}$ . Then, it narrows into  $S_2 = \{c, f(a,a)\}$  using the rule  $g(a) \to c$  with substitution  $\sigma_2 = \{z_1 \mapsto a\}$ . Finally, it narrows into  $S_3 = \{c,d\}$  using the rule  $f(z_2,a) \to d$ , with substitution  $\sigma_3 = \{z_2 \mapsto a\}$ , which allows  $S\sigma$  to reach G using substitution  $\sigma = \sigma_3 \circ \sigma_2 \circ \sigma_1 = \{x \mapsto a, y \mapsto a, z_1 \mapsto a, z_2 \mapsto a\}$ .

# Multiset Narrowing

### Soundness of Multiset Narrowing w.r.t. Multiset Reachability

- If there exists a multiset narrowing derivation from S to S' with narrowing substitution  $\sigma$  and there is a matching substitution  $\theta$  such that  $S'\theta = G$ , then a multist S is reachable to the target G using substitution  $\theta \circ \sigma$ .
- Starting with the source multiset S, we may use a multiset narrowing tree to find such S' that can be matchable to the target G.

### Weak Completeness of Multiset Narrowing w.r.t. Multiset Reachability

- If there is no multiset narrowing derivation from S to S' that can be matchable to G, then there is no *normal* substitution  $\sigma$ , which allows  $S\sigma$  to reach G.
- Inherited from the weak completeness of reachability analysis using narrowing
- For strong completeness, some constraints might be needed.

# Multiset Narrowing

## **Weak Completeness Example**

• Given  $\mathcal{R} = \{a \to b, \ a \to c, \ g(f(b), f(c)) \to a\}$ , consider the reachability problem from g(f(x), f(x)) to a. (For multiset reachability, consider the source multiset  $\{g(f(x), f(x))\}$  to the target multiset  $\{a\}$ .) The problem is satisfiable using substitution  $\{x \mapsto a\}$  (i.e.,  $g(f(a), f(a)) \to_{\mathcal{R}} g(f(b), f(a)) \to_{\mathcal{R}} g(f(b), f(c)) \to_{\mathcal{R}} a$ ), but we may not apply a narrowing (or multiset narrowing) step from g(f(x), f(x)) nor it is matchable with a.

# Multiset Narrowing using Equational Terms [Strong completeness using strongly irreducibility condition]

Let  $\mathcal{R}$  be a semi-complete TRS and  $S = \{s_1 \approx^? t_1, \ldots, s_n \approx^? t_n\}$  be a multiset of equational terms, where each  $t_k$ ,  $1 \le k \le n$ , is a strongly irreducible term. If all multiset narrowing derivations starting from S terminate, then we can decide whether the (usual) reachability problem represented by S is satisfiable or not (i.e., infeasible).

# Multiset Narrowing for (usual) Reachability Analysis (Type 2)

## Multiset Rewriting (Adapted from MT 2007)

- Considering multisets of pairs of terms instead of considering multisets of terms
- Let S and T be multisets of the pairs of terms. We write  $S \to_{[\mathcal{R}, M_2]} T$  if there is a pair of terms  $(s, t) \in S$  such that  $s \to_{\mathcal{R}} u$  and  $T = (S \{(s, t)\}) \cup \{(u, t)\}$ .

### Multiset Narrowing (Adapted from MT 2007)

A multiset of pairs of terms S is *narrowable* into a multiset of pairs of terms T if there exists a pair of terms (s,t) in S and a substitution  $\sigma$  such that

- $s \leadsto_{\sigma, \mathcal{R}} u$ , and
- $T = (S \{(s, t)\})\sigma \cup \{(u, t\sigma)\}.$

Then, we write  $S \leadsto_{\sigma,\mathcal{R},M_2} T$ . Also, we write  $S \leadsto_{\sigma,\mathcal{R},M_2} S'$  if there exists a narrowing derivation  $S = S_1 \leadsto_{\sigma_1,\mathcal{R},M_2} S_2 \leadsto_{\sigma_2,\mathcal{R},M_2} \cdots \leadsto_{\sigma_{n-1},\mathcal{R},M_2} S_n = S'$  such that  $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$ . If n = 1, then  $\sigma = \varepsilon$ .

# Multiset Narrowing

### **Proposition**

Let  $\mathcal{R}$  be a TRS and  $S = \{(s_1, t_1), \dots, (s_n, t_n)\}$  be a multiset of pair of terms. If  $S \leadsto_{\sigma, \mathcal{R}, M_2}^* S'$  and S' is syntactically unifiable with  $\theta$ , then  $\theta \circ \sigma$  is a solution of the reachability problem represented by  $S = \{(s_1, t_1), \dots, (s_n, t_n)\}$ .

## Remarks and comparison

- Multiset narrowing for multisets of (ordinary) terms: suitable for multiset reachability analysis
- Multiset narrowing for multisets of equational terms: suitable for E-unifiability. For reachability analysis, it may obtain the strong completeness at the price of the strongly irreducibility condition of the right-hand sides, etc.
- Multiset narrowing for multisets of pairs of equational terms: suitable for reachability analysis. However, it does not alone provide the strong completeness of the reachability problem consisting of multiple goals.

## Intuition of $\rightarrow_{[\mathcal{R},M_2]}$ and $\rightsquigarrow_{\sigma,\mathcal{R},M_2}$

- $S \to_{[\mathcal{R},M_2]} T$  if T is obtained by replacing one pair of elements (s,t) in S with (u,t) using  $s \to_{\mathcal{R}} u$ . Only the first element in a pair can be rewritten by  $\mathcal{R}$ , while the second element serves as a target and is intact for  $\to_{[\mathcal{R},M_2]}$ -steps.
- $S \leadsto_{\sigma,\mathcal{R},M_2} T$  if T is obtained by replacing one pair of elements (s,t) in S with  $(u,t\sigma)$  from  $s \leadsto_{\sigma,\mathcal{R}} u$  and then applying the narrowing substitution to the remaining multiset  $S \{(s,t)\}$ .

### Definitions

- A multiset of pair of terms  $\{(s_k, t_k) \mid 1 \leq k \leq n\}$  is syntactically unifiable with a substitution  $\theta$  if  $s_k\theta = t_k\theta$  for all  $1 \leq k \leq n$ . In particular, it is trivially unifiable if  $s_k = t_k$  for all  $1 \leq k \leq n$ .
- A substitution  $\tau$  is a *solution* of the reachability problem represented by a multiset  $S = \{(s_1, t_1), \dots, (s_n, t_n)\}$  if  $s_1 \tau \to_{\mathcal{D}}^* t_1 \tau \wedge \dots \wedge s_n \tau \to_{\mathcal{D}}^* t_n \tau$ .

# Formalization in Isabelle/HOL

### Formalization of narrowing

Formalization of narrowing is done using inductive\_set in Isabelle. Here, s narrows into t iff  $(s,t,\delta) \in$  narrowing\_step. (Here,  $\mathcal{R}$  is added as a parameter of narrowing\_step by locale in isabelle.)

inductive\_set narrowing\_step where "( $t = (replace_at \ s \ p \ (snd \ rl)) \cdot \delta \wedge \omega \bullet rl \in \mathcal{R} \wedge (vars_term \ s \cap vars_rule \ rl = \{\}) \wedge p \in fun_poss \ s \wedge mgu \ (s|_p) \ (fst \ rl) = Some \ \delta) \Rightarrow (s, \ t, \ \delta) \in narrowing_step"$ 

### Remarks

Above, the renaming  $\omega$  is applied to the rule rl, expressed by  $\omega \bullet rl$ , so that no variable shares between s and rl. This corresponds to a variant of a rewrite rule  $l \to r$  in the Narrowing definition, where  $l \to r$  is denoted here by rl. For renaming, we use the earlier formalization of permutation for renaming in IsaFoR.

17

# Formalization in Isabelle/HOL

### Formalization of narrowing derivation

The following formalizes whether a narrowing derivation  $s \leadsto_{\sigma}^* t$  holds or not, which cannot simply use the reflexive and transitive closure of the relation derived from narrowing step because  $\sigma$  should be combined for the narrowing steps from s and t.

```
definition narrowing_derivation where "narrowing_derivation s s' \sigma \longleftrightarrow (\exists n. (\exists f \tau. f \ 0 = s \land f \ n = s' \land (\forall i < n. ((f \ i), (f (Suc \ i)), (\tau \ i)) \in narrowing\_step) \land (if \ n = 0 \ then \ \sigma = Var \ else \ \sigma = compose (map (\lambda i.(\tau \ i))[0.. < n]))))"
```

### Remarks

Above,  $s \leadsto_{\sigma}^* t$  is true if there are functions f and  $\tau$  forming the chains of narrowing steps and their corresponding narrowing substitutions, where the end points of the chain formed by f are s and s', respectively, and  $\sigma$  is the composition of all substitutions of the chain formed by the function  $\tau$ . (Here, if the length of the chain is 0, then  $\sigma$  is  $\varepsilon$ .)<sup>20</sup>

# Formalization in Isabelle/HOL

## **Locale for Equational Narrowing**

We use the Isabelle's locale to specify the constraints for these new symbols in Equational Narrowing.thy.

```
locale equational_narrowing = narrowing \mathcal{R} for \mathcal{R}::"('f,'v::infinite) trs" +
 fixes \mathcal{R}' :: "('f, 'v:: infinite) trs"
   and R :: "('f, 'v:: infinite) trs"
   and \mathcal{F} ::
                       "'f sig"
   and \mathcal{D} ::
                      "'f sig"
                       "wf trs \mathcal{R}"
 assumes
                       "\mathcal{R} = \mathcal{R}' \cup \{(Fun \doteq [Var x, Var x], Fun \top [])\}"
   and
                       "funas trs \mathcal{R}' \subseteq \mathcal{F}"
   and
                       "\mathcal{D} = \{(\dot{=}, 2), (\top, 0)\}"
   and
                       "\mathcal{D} \cap \mathcal{F} = \{\}"
   and
```

# Formalization in Isabelle/HOL

## Formalization of Equational Terms

The following two function symbols are introduced.

```
consts DOTEQ :: "'f" ("=")
consts TOP :: "'f" ("T")
```

The binary function symbol  $\doteq$  corresponds to  $\approx$ ?. In the following, a term t is a wf\_equational\_term if t is either the constant  $\top$  (i.e., Fun  $\top$  []) or it is an equational term of the form  $u \approx$ ? v, where the binary symbol  $\doteq$  and the constant  $\top$  do not occur in any of u and v.

```
definition wf_equational_term where
```

```
"wf_equational_term t \longleftrightarrow ((t = \operatorname{Fun} \top []) \lor (\exists u \, v. \, t = \operatorname{Fun} \doteq [u :: ('f,' \, v) \, \operatorname{term}, \, v :: ('f,' \, v) \, \operatorname{term}] \land (\dot{=}, 2) \notin \operatorname{funas\_term} \, u \land (\dot{=}, 2) \notin \operatorname{funas\_term} \, v) \land (\top, 0) \notin \operatorname{funas\_term} \, u \land (\top, 0) \notin \operatorname{funas\_term} \, v))"
```

21

# Formalization in Isabelle/HOL

### Formalization of Lifting Lemma in Equational Narrowing

```
lemma lifting_lemma:
fixes V :: "('v :: infinite) set" and S :: "('f,'v) term" and T :: "('f,'v) term"
           assumes "normal subst \mathcal{R} \theta"
                               and
                                                                                                                  "wf equational term S"
                                                                                                                "T = S \cdot \theta"
                               and
                                                                                                                  "vars_term S \cup subst\_domain \theta \subseteq \mathcal{V}"
                               and
                                                                                                                  "(T, T') \in rstep \mathcal{R})^*"
                               and
                                                                                                                  "finite V"
                             and
                                                                                                                  "\exists \sigma \ \theta' \ S'.narrowing_derivation S \ S' \ \sigma \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equational_term S' \land T' = S' \cdot \theta' \land wf_equati
                      shows
                                                                                                               normal\_subst \ \mathcal{R} \ \theta' \wedge (\sigma \circ_s \theta') \mid_S \mathcal{V} = \theta \mid_S \mathcal{V}"
```

# Formalization in Isabelle/HOL

# Formalization of Multiset Rewriting $\rightarrow_{[\mathcal{R},\mathcal{M}_1]}$

•  $S \rightarrow_{[\mathcal{R},M_1]} T$  iff  $(S,T) \in multiset\_reduction\_step$ inductive\_set  $multiset\_reduction\_step$  where " $s \in \# S \land T = (S - \{\#s\#\} + \{\#t\#\}) \land (s,t) \in rstep \mathcal{R} \Rightarrow (S,T) \in multiset\_reduction\_step$ "

### Formalization of Multiset Narrowing $\leadsto_{\sigma, \mathcal{R}, M_1}$

- $S \leadsto_{\sigma, \mathcal{R}, M_1} T$  iff  $(S, T, \sigma) \in multiset\_narrowing\_step$ .
- inductive\_set multiset\_narrowing\_step where " $(s,t) \in \#S \land T = (subst\_term\_multiset \ \sigma \ (S \{\#s\#\}) + \{\#t\#\}) \land (s,t,\sigma) \in narrowing\_step \Rightarrow (S,T,\sigma) \in multiset\_narrowing\_step$ "

24

### Formalization of the completeness of *E*-unifiability

```
theorem narrowing_based_E_unifiability: assumes "semi_complete (rstep \mathcal{R})" and funas_rule (s,t)\subseteq F shows "narrowing_derivation_reaches_to_success (s,t)\Rightarrow E_unifiable (s,t)" "narrowing_derivation_not_reaches_to_success (s,t)\Rightarrow not_E_unifiable (s,t)"
```

### Weak completeness of multiset narrowing w.r.t. multiset reachability

The following isabelle theorem states the weak completeness of multiset narrowing w.r.t. multiset reachability.

```
theorem multiset_narrowing_based_reachability_weak_completeness: "multiset_narrowing_reachable_from_to S G \longrightarrow (\exists \theta.(subst\_term\_multiset \ \theta \ S, G) \in (multiset\_reduction\_step)^*) "multiset_narrowing_not_reachable_from_to S G \longrightarrow \neg(\exists \theta.normal\_subst \ \mathcal{R} \ \theta \land (subst\_term\_multiset \ \theta \ S, \ G) \in (multiset\_reduction\_step)^*)
```

# Formalization in Isabelle/HOL

# Formalization of Multiset Rewriting $\rightarrow_{[\mathcal{R},\mathcal{M}_2]}$

- $S \rightarrow_{[\mathcal{R},M_2]} T$  iff  $(S,T) \in multiset\_pair\_reduction\_step$ . (Here,  $\mathcal{R}$  is implicitly included as a parameter of multiset\\_pair\\_reduction\\_step in the locale.)
- inductive\_set multiset\_pair\_reduction\_step where " $(s,t) \in \# S \land T = (S \{\#(s,t)\#\} + \{\#(u,t)\#\}) \land (s,u) \in rstep \mathcal{R} \Rightarrow (S,T) \in multiset\_pair\_reduction\_step$ "

### Formalization of Multiset Narrowing $\leadsto_{\sigma, \mathcal{R}.M_2}$

- $S \leadsto_{\sigma, \mathcal{R}, M_2} T$  iff  $(S, T, \sigma) \in multiset\_pair\_narrowing\_step.$
- inductive\_set multiset\_pair\_narrowing\_step where

" $(s,t) \in \# S \land T = (subst\_pairs\_multiset \ \sigma \ (S - \{\#(s,t)\#\}) + \{\#(u,t \cdot \sigma)\#\}) \land (s,u,\sigma) \in narrowing\_step \Rightarrow (S,T,\sigma) \in multiset\_pair\_narrowing\_step$ "

### Formalization of strong completeness of reachability analysis

### Remarks

- The strongly irreducibility condition of C is imposed as an assumption:  $\forall (u, v) \in set \ C. \ strongly\_irreducible\_term \ \mathcal{R} \ v.$
- The reachability problem represented by a list C (consisting of pairs of terms representing the reachability goals) is first converted into a multiset consisting of equational terms in both the above multiset narrowing derivation ...



# Thank you!

### Dohan Kim

ARI Final Meeting, Nagoya, Japan (Feb. 20-23, 2024)

## References

- Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert
  A. Kowalski, editors, 5th Conference on Automated Deduction, Les Arcs, France,
  July 8-11, 1980, Proceedings, volume 87 of Lecture Notes in Computer Science,
  pages 318–334. Springer, 1980.
- Aart Middeldorp and Erik Hamoen. Completeness results for basic narrowing. Appl. Algebra, Eng. Commun. Comput.,5:213–253, 1994.
- José Meseguer and Prasanna Thati. Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. High. Order Symb. Comput., 20(1-2):123–160, 2007.
- Prasanna Thati and José Meseguer. Complete Symbolic Reachability Analysis
  Using Back-and-Forth Narrowing. First International Conference, CALCO 2005,
  Swansea, UK, September 3-6, 2005, Proceedings, volume 3629 of Lecture Notes in
  Computer Science, pages 379–394. Springer, 2005.