

An Isabelle/HOL formalization of narrowing and its applications to E-unifiability, reachability and infeasibility

Dohan Kim

ARI Final Meeting, Nagoya, Japan (Feb. 20-23, 2024)

Contents

- 1. Narrowing
- 2. E-unifiability, Reachability and Infeasibility
- 3. Narrowing for E-unifiability
- 4. Multiset Narrowing
- 5. Multiset Narrowing for Multiset Reachability Analysis
- 6. Multiset Narrowing for (usual) Reachability and Infeasibility
- 7. Formalization in Isabelle/HOL

Narrowing

Overview:

- Narrowing generalizes rewriting in the sense that matching is replaced by unification.
- Symbolically represents a rewriting relation between terms as a narrowing relation between more general terms.

Definition

A term t is *narrowable* into a term t' if there exist a non-variable position p in t, a variant $\ell \to r$ of a rewrite rule in \mathcal{R} , and a substitution σ such that

- σ is a most general unifier of $t|_{\rho}$ and ℓ ,
- $t' = t[r]_p \sigma$.
- We write $t \rightsquigarrow_{[p,\ell
 ightarrow r,\sigma]} t'$ or simply $t \rightsquigarrow_{\sigma,\mathcal{R}} t'$.
- Also, we write $t \rightsquigarrow_{\sigma,\mathcal{R}}^* t'$ if there exists a narrowing derivation $t = t_1 \rightsquigarrow_{\sigma_1,\mathcal{R}} t_2 \rightsquigarrow_{\sigma_2,\mathcal{R}} \cdots \rightsquigarrow_{\sigma_{n-1},\mathcal{R}} t_n = t'$ such that $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$. If n = 1, then $\sigma = \varepsilon$.

Narrowing

Example

- Given a rewrite system $\mathcal{R} = \{f(a, b) \rightarrow d\}$, can we rewrite term f(x, y)?
- Can we narrow f(x, y)?

Lifting Lemma (Hullot 1980, MH 1994)

Let \mathcal{R} be a TRS. Suppose we have terms s and t, a normalized substitution θ and a set of variables V such that $\mathcal{V}(s) \cup \mathcal{D}\theta \subseteq V$ and $t = s\theta$. If $t \to_{\mathcal{R}}^{*} t'$, then there exist a term s' and substitutions θ' , σ such that

- $s \rightsquigarrow^*_{\sigma, \mathcal{R}} s'$,
- $s'\theta' = t'$,
- $\theta' \circ \sigma = \theta[V]$,
- θ' is normalized.

E-unifiability, reachability, and infeasibility

E-unifiability

- Equational unification (or *E*-unification) is concerned with making terms equivalent w.r.t. an equational theory *E*.
- Two terms s and t are *E*-unifiable if there exists a substitution σ such that $s\sigma \approx_E t\sigma$.
- For example, consider E = {f(x, 0) ≈ x}. Then, two terms f(y, z) and 0 are not syntactically unifiable, but they are E-unifiable using the substitution
 θ := {y → 0, z → 0} because f(y, z)θ = f(0, 0) ≈_E 0.
- Given a set of equations E and two terms s and t, it is generally undecidable whether there exists a substitution σ such that $s\sigma \approx_E t\sigma$ holds or not. It is a natural question to ask when this E-unifiability problem is decidable.

E-unifiability, reachability, and infeasibility

Reachability and infeasibility

- One of the fundamental problems in term rewriting systems.
- (Original form) Given a TRS \mathcal{R} and a source term s, does s reach to t by a rewriting sequence, written $s \rightarrow_{\mathcal{R}}^* t$?
- (Generalization) This problem has the following generalization for s and t containing variables: Given a TRS \mathcal{R} and two terms s and t, the reachability problem is stated as follows: is there a substitution σ such that $s\sigma \rightarrow_{\mathcal{R}}^* t\sigma$?
- We say that the above reachability problem is *satisfiable* if there is such a substitution σ .
- If no such a substitution exists, then this problem is said to be *infeasible*.

Equational Terms (or goals)

Equational Terms

- Add a fresh binary function symbol ≈? and a fresh constant ⊤ to the set of function symbols and assume that R contains the rewrite rule x ≈? x → ⊤.
- Equational terms are the terms of the following form s ≈[?] t, where s and t do not contain any occurrences of ≈[?] and ⊤.
- We may use the lifting lemma for equational terms because equational terms are simply some specific types of terms.

Lemma (Hullot 1980, MH 1994)

$$s \approx t \rightsquigarrow_{\sigma, \mathcal{R}}^* \top$$
 implies $s\sigma \approx t\sigma \rightarrow_{\mathcal{R}}^* \top$.

Lemma (Hullot 1980, MH 1994)

Given a TRS \mathcal{R} , if $s \approx^{?} t \rightsquigarrow^{*}_{\sigma,\mathcal{R}} \top$, then σ is an \mathcal{R} -unifier of s and t.

Narrowing for E-unifiability

Lemma

• Given a TRS \mathcal{R} , if there is no narrowing derivation $s \approx^{?} t \rightsquigarrow_{\sigma,\mathcal{R}}^{*} \top$ for any substitution σ , then there is no normal substitution θ satisfying $s\theta \approx^{?} t\theta \rightarrow_{\mathcal{R}}^{*} \top$.

Lemma

- Given a semi-complete TRS \mathcal{R} and assume that all narrowing derivations starting from $s \approx^{?} t$ terminates. If there is no narrowing derivation $s \approx^{?} t \rightsquigarrow_{\sigma,\mathcal{R}}^{*} \top$ for any substitution σ , then s and t have no R-unifier.
- Proof idea: Assume that there is no narrowing derivation s ≈? t →_{σ,R} ⊤ for any substitution σ. Then, by the above lemma, there is no normal substitution θ satisfying sθ ≈? tθ →_R^{*} ⊤. Now, suppose, towards a contradiction, that s and t have an *R*-unifier. Then, there is some substitution τ such that sτ ⇔_R^{*} tτ. Since *R* is semi-complete, there is a normal substitution τ' of τ such that sτ' ⇔_R^{*} tτ'. Now, we may infer that sτ' ≈? tτ' →_R^{*} ⊤, which is the required contradiction.

Narrowing for E-unifiability

Theorem

• Given a semi-complete TRS \mathcal{R} , if all narrowing derivations starting from $s \approx^{?} t$ terminates, then we can decide whether $s \approx^{?} t$ has an \mathcal{R} -unifier or not.

Example

- Let E = {f(x,0) ≈ g(x), g(b) ≈ c} and the unification problem f(x, y) ≈[?]_E c. A rewrite system for E is R = {f(x,0) → g(x), g(b) → c, x ≈[?] x → T}, where the rule x ≈[?] x → T is added. We rename the rules in R whenever necessary.
- First, find the mgu of f(x, y) and $f(x_1, 0)$ in $f(x_1, 0) \rightarrow g(x_1)$, which yields $\sigma_1 = \{x \mapsto x_1, y \mapsto 0\}$. Then, we have $(f(x, y) \approx c) \rightsquigarrow_{\sigma_1} (g(x_1) \approx c)$.
- Find the mgu of g(x₁) and g(b), yielding σ₂ = {x₁ → b}. Then, the narrowing step (g(x₁) ≈[?] c) →_{σ2} (c ≈[?] c) is applied. Next, c ≈[?] c →_{σ3} ⊤ using x₂ ≈[?] x₂ → ⊤, where σ₃ = {x₂ → c}. This reaches to ⊤, so the above *E*-unification problem is solvable by an *R*-unifier σ₃ ∘ σ₂ ∘ σ₁ = {x → b, y → 0, x₁ → b, x₂ → c}.

Multiset Narrowing

- Identical elements in a multiset can reach to different elements (or states).
- A multiset of terms may reach another multiset of terms using term rewriting.
- Adapts from the existing narrowing methods (in particular, MH1994) for multiset setting. Multiset narrowing works on multisets of (ordinary) terms, multisets of equational terms, and multisets of pairs of terms.
- It can also be used for multiple goals in the (traditional) reachability and *E*-unification problems.
- Multiset narrowing is based on multiset rewriting.

Multiset Reachability Analysis

Given a multiset of terms M = {t₁,..., t_n}, does it reach to the target multiset of terms M' = {t'₁,..., t'_n} using a term rewriting system R?

Multiset Reachability Analysis (more general)

• Given a multiset of terms $M = \{t_1, \ldots, t_n\}$, is there a substitution σ such that $M\sigma := \{t_1\sigma, \ldots, t_n\sigma\}$ reaches to the target multiset of terms $M' = \{t'_1, \ldots, t'_n\}$ using a term rewriting system \mathcal{R} ?

Reachability Analysis by Multisets

• Given a rewrite system \mathcal{R} and pairs of terms $(s_1, t_1), \ldots, (s_n, t_n)$, is there a substitution σ exists such that $s_1 \sigma \rightarrow_{\mathcal{R}}^* t_1 \sigma \wedge \cdots \wedge s_n \sigma \rightarrow_{\mathcal{R}}^* t_n \sigma$. Here, the reachability problem is represented by the multiset $\{(s_k, t_k) | 1 \le k \le n\}$.

Multiset rewriting on multisets of (equational) terms

Let S and T be multisets of (equational) terms. We write $S \rightarrow_{[\mathcal{R}, M_1]} T$ if there exists an (equational) term $s \in S$ such that $s \rightarrow_{\mathcal{R}} t$ and $T = (S - \{s\}) \cup \{t\}$.

Multiset narrowing on multisets of (equational) terms

• A multiset of (equational) terms S is *narrowable* into a multiset of (equational) terms T if there exist an (equational) term $s \in S$ and a substitution σ such that

•
$$s \rightsquigarrow_{\sigma,\mathcal{R}} t$$
,
• $T = ((S - \{s\})\sigma \cup \{t\})$

Then, we write $S \rightsquigarrow_{\sigma,\mathcal{R},M_1} T$. Also, we write $S \rightsquigarrow_{\sigma,\mathcal{R},M_1}^* S'$ if there exists a narrowing derivation $S = S_1 \rightsquigarrow_{\sigma_1,\mathcal{R},M_1} S_2 \rightsquigarrow_{\sigma_2,\mathcal{R},M_1} \cdots \rtimes_{\sigma_{n-1},\mathcal{R},M_1} S_n = S'$ such that $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$. If n = 1, then $\sigma = \varepsilon$.

Lifting Lemma for Multiset Narrowing

Let \mathcal{R} be a TRS. Suppose we have two multisets of (equational) terms S and T, a normalized substitution θ and a set of variables V such that $\mathcal{V}(S) \cup \mathcal{D}\theta \subseteq V$ and $T = S\theta$. If $T \rightarrow^*_{[\mathcal{R},\mathcal{M}_1]} T'$, then there exist a multiset of (equational) terms S' and substitutions θ' , σ such that

- $S \rightsquigarrow^*_{\sigma,\mathcal{R},M_1} S'$,
- $S'\theta' = T'$,
- $\theta' \circ \sigma = \theta[V]$,
- θ' is normalized.

Remarks

Looks very similar to the lifting lemma for ordinary terms. This lifting lemma holds for multisets of both ordinary and equational terms.

Soundness of Multiset Narrowing w.r.t. Multiset Reachability

- If there exists a multiset narrowing derivation from S to S' with narrowing substitution σ and there is a matching substitution θ such that $S'\theta = G$, then a multist S is reachable to the target G using substitution $\theta \circ \sigma$.
- Starting with the source multiset S, we may use a multiset narrowing tree to find such S' that can be matchable to the target G.

Weak Completeness of Multiset Narrowing w.r.t. Multiset Reachability

- If there is no multiset narrowing derivation from S to S' that can be matchable to G, then there is no *normal* substitution σ , which allows $S\sigma$ to reach G.
- Inherited from the weak completeness of reachability analysis using narrowing
- For strong completeness, some constraints might be needed.

An Example of Multiset Narrowing for Multiset Reachability

Example

- Consider the source $S = \{f(x, y), f(x, y)\}$ and target $G = \{c, d\}$ with (renamed) rewrite system $\mathcal{R} = \{f(a, b) \rightarrow d, f(a, z_1) \rightarrow g(z_1), f(z_2, a) \rightarrow d, g(a) \rightarrow c\}$.
- If we simply use the rule $f(a, b) \rightarrow d$, then $S\sigma$ is not reachable to G.
- Multiset narrowing starts with $S = \{f(x, y), f(x, y)\}$ and narrows into $S_1 = \{g(z_1), f(a, z_1)\}$ using the rule $f(a, z_1) \rightarrow g(z_1)$ with substitution $\sigma_1 = \{x \mapsto a, y \mapsto z_1\}$. Then, it narrows into $S_2 = \{c, f(a, a)\}$ using the rule $g(a) \rightarrow c$ with substitution $\sigma_2 = \{z_1 \mapsto a\}$. Finally, it narrows into $S_3 = \{c, d\}$ using the rule $f(z_2, a) \rightarrow d$, with substitution $\sigma_3 = \{z_2 \mapsto a\}$, which allows $S\sigma$ to reach G using substitution $\sigma = \sigma_3 \circ \sigma_2 \circ \sigma_1 = \{x \mapsto a, y \mapsto a, z_1 \mapsto a, z_2 \mapsto a\}$.

Weak Completeness Example

Given R = {a → b, a → c, g(f(b), f(c)) → a}, consider the reachability problem from g(f(x), f(x)) to a. (For multiset reachability, consider the source multiset {g(f(x), f(x))} to the target multiset {a}.) The problem is satisfiable using substitution {x ↦ a} (i.e., g(f(a), f(a)) →_R g(f(b), f(a)) →_R g(f(b), f(c)) →_R a), but we may not apply a narrowing (or multiset narrowing) step from g(f(x), f(x)) nor it is matchable with a.

Multiset Narrowing using Equational Terms [Strong completeness using strongly irreducibility condition]

Let \mathcal{R} be a semi-complete TRS and $S = \{s_1 \approx t_1, \ldots, s_n \approx t_n\}$ be a multiset of equational terms, where each t_k , $1 \le k \le n$, is a strongly irreducible term. If all multiset narrowing derivations starting from S terminate, then we can decide whether the (usual) reachability problem represented by S is satisfiable or not (i.e., infeasible).

Multiset Narrowing for (usual) Reachability Analysis (Type 2)

Multiset Rewriting (Adapted from MT 2007)

- Considering multisets of pairs of terms instead of considering multisets of terms
- Let S and T be multisets of the pairs of terms. We write $S \rightarrow_{[\mathcal{R},M_2]} T$ if there is a pair of terms $(s,t) \in S$ such that $s \rightarrow_{\mathcal{R}} u$ and $T = (S \{(s,t)\}) \cup \{(u,t)\}$.

Multiset Narrowing (Adapted from MT 2007)

A multiset of pairs of terms S is *narrowable* into a multiset of pairs of terms T if there exists a pair of terms (s, t) in S and a substitution σ such that

- $s \rightsquigarrow_{\sigma, \mathcal{R}} u$, and
- $T = (S \{(s, t)\})\sigma \cup \{(u, t\sigma)\}.$

Then, we write $S \rightsquigarrow_{\sigma,\mathcal{R},M_2} T$. Also, we write $S \rightsquigarrow_{\sigma,\mathcal{R},M_2}^* S'$ if there exists a narrowing derivation $S = S_1 \rightsquigarrow_{\sigma_1,\mathcal{R},M_2} S_2 \rightsquigarrow_{\sigma_2,\mathcal{R},M_2} \cdots \rightsquigarrow_{\sigma_{n-1},\mathcal{R},M_2} S_n = S'$ such that $\sigma = \sigma_{n-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$. If n = 1, then $\sigma = \varepsilon$.

Intuition of $\rightarrow_{[\mathcal{R},M_2]}$ and $\rightsquigarrow_{\sigma,\mathcal{R},M_2}$

- S →_[R,M2] T if T is obtained by replacing one pair of elements (s, t) in S with (u, t) using s →_R u. Only the first element in a pair can be rewritten by R, while the second element serves as a target and is intact for →_[R,M2]-steps.
- $S \rightsquigarrow_{\sigma,\mathcal{R},M_2} T$ if T is obtained by replacing one pair of elements (s, t) in S with $(u, t\sigma)$ from $s \rightsquigarrow_{\sigma,\mathcal{R}} u$ and then applying the narrowing substitution to the remaining multiset $S \{(s, t)\}$.

Definitions

- A multiset of pair of terms {(s_k, t_k) | 1 ≤ k ≤ n} is syntactically unifiable with a substitution θ if s_kθ = t_kθ for all 1 ≤ k ≤ n. In particular, it is trivially unifiable if s_k = t_k for all 1 ≤ k ≤ n.
- A substitution τ is a *solution* of the reachability problem represented by a multiset $S = \{(s_1, t_1), \ldots, (s_n, t_n)\}$ if $s_1 \tau \rightarrow_{\mathcal{R}}^* t_1 \tau \wedge \cdots \wedge s_n \tau \rightarrow_{\mathcal{R}}^* t_n \tau$.

Proposition

Let \mathcal{R} be a TRS and $S = \{(s_1, t_1), \dots, (s_n, t_n)\}$ be a multiset of pair of terms. If $S \rightsquigarrow_{\sigma, \mathcal{R}, M_2}^* S'$ and S' is syntactically unifiable with θ , then $\theta \circ \sigma$ is a solution of the reachability problem represented by $S = \{(s_1, t_1), \dots, (s_n, t_n)\}$.

Remarks and comparison

- Multiset narrowing for multisets of (ordinary) terms: suitable for multiset reachability analysis
- Multiset narrowing for multisets of equational terms: suitable for *E*-unifiability. For reachability analysis, it may obtain the strong completeness at the price of the strongly irreducibility condition of the right-hand sides, etc.
- Multiset narrowing for multisets of pairs of equational terms: suitable for reachability analysis. However, it does not alone provide the strong completeness of the reachability problem consisting of multiple goals.

Formalization in Isabelle/HOL

Formalization of narrowing

Formalization of narrowing is done using inductive_set in Isabelle. Here, *s* narrows into *t* iff $(s, t, \delta) \in$ narrowing_step. (Here, \mathcal{R} is added as a parameter of narrowing_step by locale in isabelle.)

inductive_set narrowing_step where "($t = (replace_at \ s \ p \ (snd \ rl)) \cdot \delta \land \omega \bullet rl \in \mathcal{R} \land (vars_term \ s \cap vars_rule \ rl = \{\}) \land p \in fun_poss \ s \land mgu \ (s|_p) \ (fst \ rl) = Some \ \delta) \Rightarrow (s, \ t, \ \delta) \in narrowing_step"$

Remarks

Above, the renaming ω is applied to the rule rl, expressed by $\omega \bullet rl$, so that no variable shares between s and rl. This corresponds to a variant of a rewrite rule $l \to r$ in the Narrowing definition, where $l \to r$ is denoted here by rl. For renaming, we use the earlier formalization of *permutation for renaming* in IsaFoR.

Formalization of narrowing derivation

The following formalizes whether a narrowing derivation $s \rightsquigarrow_{\sigma}^{*} t$ holds or not, which cannot simply use the reflexive and transitive closure of the relation derived from narrowing_step because σ should be combined for the narrowing steps from s and t.

definition narrowing_derivation where "narrowing_derivation s s' $\sigma \leftrightarrow (\exists n. (\exists f \tau. f \ 0 = s \land f \ n = s' \land (\forall i < n. ((f \ i), (f (Suc \ i)), (\tau \ i)) \in narrowing_step) \land (if \ n = 0 \ then \ \sigma = Var \ else \ \sigma = compose (map (\lambda i.(\tau \ i))[0.. < n])))"$

Remarks

Above, $s \rightsquigarrow_{\sigma}^* t$ is true if there are functions f and τ forming the chains of narrowing steps and their corresponding narrowing substitutions, where the end points of the chain formed by f are s and s', respectively, and σ is the composition of all substitutions of the chain formed by the function τ . (Here, if the length of the chain is 0, then σ is ε .)²⁰

Formalization of Equational Terms

The following two function symbols are introduced.

```
consts DOTEQ :: "'f" ("\doteq")
consts TOP :: "'f" ("\top")
```

The binary function symbol \doteq corresponds to \approx ?. In the following, a term *t* is a wf_equational_term if *t* is either the constant \top (i.e., Fun \top []) or it is an equational term of the form $u \approx$? *v*, where the binary symbol \doteq and the constant \top do not occur in any of *u* and *v*.

definition wf_equational_term where

"wf_equational_term t \longleftrightarrow ((t = Fun \top []) \lor ($\exists u v. t = Fun \doteq [u :: ('f,'v) term, v :: ('f,'v) term$] \land (\doteq , 2) \notin funas_term u \land (\doteq , 2) \notin funas_term v) \land (\top , 0) \notin funas_term u \land (\neg , 0) \notin funas_term v)) "

Locale for Equational Narrowing

We use the Isabelle's locale to specify the constraints for these new symbols in Equational_Narrowing.thy.

```
locale equational_narrowing = narrowing \mathcal{R} for \mathcal{R}::"('f,'v::infinite) trs" +
 fixes \mathcal{R}' :: "('f, 'v:: infinite) trs"
   and \mathcal{R} :: "('f, 'v:: infinite) trs"
   and \mathcal{F} :: "'f sig"
   and \mathcal{D} :: "'f sig"
 assumes "wf trs \mathcal{R}"
                     "\mathcal{R} = \mathcal{R}' \cup \{(Fun \doteq [Var x, Var x], Fun \top [])\}"
   and
                      "funas_trs \mathcal{R}' \subseteq \mathcal{F} "
   and
                     "\mathcal{D} = \{(\pm, 2), (\top, 0)\}"
   and
                      "\mathcal{D} \cap \mathcal{F} = \{\}"
   and
```

Formalization of Lifting Lemma in Equational Narrowing

```
lemma lifting lemma:
fixes V ::: "('v :: infinite) set" and S ::: "('f, 'v) term" and T ::: "('f, 'v) term"
                  "normal subst \mathcal{R} \theta"
 assumes
            "wf equational term S"
     and
                  "T = S \cdot \theta"
     and
                    "vars term S \cup subst domain \theta \subset \mathcal{V}"
     and
                   "(T, T') \in rstep \mathcal{R})*"
     and
     and
                    "finite V"
   shows
                    "\exists \sigma \theta' S'.narrowing derivation S S' \sigma \wedge T' = S' \cdot \theta' \wedge wf equational term S' \wedge
                   normal subst \mathcal{R} \theta' \wedge (\sigma \circ_{\mathfrak{s}} \theta') |_{\mathfrak{s}} \mathcal{V} = \theta |_{\mathfrak{s}} \mathcal{V}''
```

Formalization in Isabelle/HOL

Formalization of Multiset Rewriting $\rightarrow_{[\mathcal{R},\mathcal{M}_1]}$

•
$$S \rightarrow_{[\mathcal{R}, \mathcal{M}_1]} T$$
 iff $(S, T) \in$ multiset_reduction_step
inductive_set multiset_reduction_step where
" $s \in \# S \land T = (S - \{\#s\#\} + \{\#t\#\}) \land (s, t) \in$ rstep $\mathcal{R} \Rightarrow (S, T) \in$
multiset_reduction_step"

Formalization of Multiset Narrowing $\rightsquigarrow_{\sigma,\mathcal{R},M_1}$

• $S \rightsquigarrow_{\sigma,\mathcal{R},M_1} T$ iff $(S, T, \sigma) \in multiset_narrowing_step$.

• inductive_set multiset_narrowing_step where " $(s,t) \in \# S \land T = (subst_term_multiset \sigma (S - \{\#s\#\}) + \{\#t\#\}) \land (s,t,\sigma) \in narrowing_step \Rightarrow (S, T, \sigma) \in multiset_narrowing_step$ "

Formalization in Isabelle/HOL

Formalization of Multiset Rewriting $\rightarrow_{[\mathcal{R}, M_2]}$

- S →_[R,M2] T iff (S, T) ∈ multiset_pair_reduction_step. (Here, R is implicitly included as a parameter of multiset_pair_reduction_step in the locale.)
- inductive_set multiset_pair_reduction_step where " $(s,t) \in \# S \land T = (S - \{\#(s,t)\#\} + \{\#(u,t)\#\}) \land (s,u) \in rstep \mathcal{R} \Rightarrow (S,T) \in multiset_pair_reduction_step$ "

Formalization of Multiset Narrowing $\rightsquigarrow_{\sigma,\mathcal{R},M_2}$

- $S \rightsquigarrow_{\sigma,\mathcal{R},M_2} T$ iff $(S, T, \sigma) \in multiset_pair_narrowing_step$.
- inductive_set multiset_pair_narrowing_step where

 $"(s,t) \in \# S \land T = (subst_pairs_multiset \ \sigma \ (S - \{\#(s,t)\#\}) + \{\#(u,t \cdot \sigma)\#\}) \land (s,u,\sigma) \in narrowing_step \Rightarrow (S, T, \sigma) \in multiset_pair_narrowing_step"$

Formalization of the completeness of *E*-unifiability

theorem	narrowing_based_E_unifiability:
assumes	"semi_complete (rstep \mathcal{R})"
and	funas_rule (s, t) \subseteq F
shows	"narrowing_derivation_reaches_to_success $(s,t) \Rightarrow$ E_unifiable (s,t) "
	"narrowing_derivation_not_reaches_to_success $(s,t) \Rightarrow not_E_unifiable (s,t)$ "

Weak completeness of multiset narrowing w.r.t. multiset reachability

The following isabelle theorem states the weak completeness of multiset narrowing w.r.t. multiset reachability.

theorem multiset_narrowing_based_reachability_weak_completeness: "multiset_narrowing_reachable_from_to $S \ G \longrightarrow$ $(\exists \theta.(subst_term_multiset \ \theta \ S, \ G) \in (multiset_reduction_step)^*)$ "multiset_narrowing_not_reachable_from_to $S \ G \longrightarrow$ $\neg(\exists \theta.normal_subst \ \mathcal{R} \ \theta \land (subst_term_multiset \ \theta \ S, \ G) \in (multiset_reduction_step)^*)$

Formalization of strong completeness of reachability analysis

theorem multiset_narrowing_based_reachability:		
assumes	"semi_complete (rstep \mathcal{R})"	
and	funas_trs (set C) \subseteq ${\cal F}$ "	
and	$\forall (u, v) \in set \ C. \ strongly_irreducible_term \ \mathcal{R} \ v$ "	
shows	"multiset_narrowing_derivation_reaches_to_success $C \Longrightarrow$ reachability C"	
	"multiset_narrowing_derivations_not_reaches_to_success C \implies infeasibility C"	

Remarks

- The strongly irreducibility condition of C is imposed as an assumption:
 ∀ (u, v) ∈ set C. strongly_irreducible_term R v.
- The reachability problem represented by a list *C* (consisting of pairs of terms representing the reachability goals) is first converted into a multiset consisting of equational terms in both the above multiset_narrowing_derivation_...

Thank you!

Dohan Kim

ARI Final Meeting, Nagoya, Japan (Feb. 20-23, 2024)

References

- Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert A. Kowalski, editors, 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer, 1980.
- Aart Middeldorp and Erik Hamoen. Completeness results for basic narrowing. Appl. Algebra, Eng. Commun. Comput.,5:213–253, 1994.
- José Meseguer and Prasanna Thati. Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. High. Order Symb. Comput., 20(1-2):123–160, 2007.
- Prasanna Thati and José Meseguer. Complete Symbolic Reachability Analysis Using Back-and-Forth Narrowing. First International Conference, CALCO 2005, Swansea, UK, September 3-6, 2005, Proceedings, volume 3629 of Lecture Notes in Computer Science, pages 379–394. Springer, 2005.