AR| adoption in termCOMP

Akihisa Yamada
ARI final meeting 2024/02/22

Overview

* termCOMP has almost decided to adopt ARI for
e TRS Standard / Innermost / Outermost / CTRS / CSTRS
e Complexity

* discussion ongoing at GitHub:
e TRS Equational
* TRS Relative / Relative Complexity
* TRS Probabilistic

SRS

ITS

ITRS

Higher-order

TRS equational

. ffrohn on Jan 1! Maintainer

Since we want to in the future, we have to extend it for equational rewriting.
Here's a first proposal:

(format ETRS) fun* rule¥* [EJ
(fun identifier number theory?)
(:theory [A | AC | C])

(rule term term)

TRS Relative

* option 1: use ":number" and analyze SN(—,/—>)
& can reuse ARl infra
* option 2:

(format RTRS) fun* rule¥

(fun identifier number)

(rule term term cost?)

(:cost number)

& make clear sense in relative complexity

& extensible for non-constant cost annotations

SRS

https://github.com/orgs/TermCOMP/discussions/87

m ::= (format SRS) fun* rule*
::= (fun identifier 1)

(rule term term)

identifier | (identifier term)

SG-ex@PrEeEEsimhEs-@rEe-mot-@E(@@O(d(-tr@deFF((
(O (r (= (s (r (g sx0MMMMMMMMMMMMMIMIMIMMMIMN)) ..

ﬁ jwaldmann

—

SRS = (format SRS) rule+

rule ::= (rule string string)

string ::= identifier | ((identifier identifier+)?)

My principle: format is syntax. Semantics is up to competition category. J

)

SRS

Which format should we use for SRSs in the future?

a dedicated format)

a restricted version of the ARI format

the current XTC format

ITS

. fron ITS ::
fun ::

rule ::
lhs ::
rhs ::
guard ::
atom ::
op ::
expression ::
add ::
sub ::
negate ::
mult ::

& Turning (format ITS) to (format LCTRS) (theory Ints) yields a correct LCTRS

format ITS) fun* rule*
fun identifier number)

rule lhs rhs guard?)

identifier expression+)
:guard (and atom+))

op expression expression)

(
(
(
(identifier identifier+)
(
(
(
>

| < | >= | <=] =

number | identifier | add | sub | negate | mult

(+ expression+)
expression expression)

(
(expression)
(

number expression) | (* expression number)

ITRS

== termCOMP need to define a restriction of LCTRS

* definitely exclude nasty SMT-LIB features
e the" " things
* |et, forall, exists, ite

 probably also Boolean variables

higher order

* Applicative Simply Typed TRS (STTRS) is clear and has potential
participants. Why not to have the category?

STTRS ::= (format STTRS) sort+ fun+ rule+
sort := (sort identifier)
fun ::= (fun identifier type)

type = identifier | (-> type+ identifier)

term = identifier | (identifier term+)
e Can higher-order with A be rescued?
* | see no chance in SOL re-joining if the semantics is not "HRS"

* Wanda can deal with 2nd-order HRS. So | proposed 2nd-order HRS category
e But Cynthia hates HRS

* So | don't think there will be any competition on HO with A in near future.

What is HRS??

[Mayr & Nipkow, TCS 192 (1998) 3-29] says

Definition 3.1. A /-term ¢ in f-normal form is called a (higher-order) pattern if every
free occurrence of a variable F 1s in a subterm F(u,) of ¢, such that #, 1s n-equivalent
to a list of distinct bound variables.

Definition 3.3. A rewrite rule is a pair [—r such that / is not a free variable, / and
r are of the same base type, and fv(/) O fu(r). A pattern rewrite rule is a rewrite
rule whose left-hand side is a pattern. A higher-order rewrite system (HRS) is a set
of rewrite rules.

Recall that by convention /, r, s and ¢ are in long f#-normal form.

... and everyone says that rule must be n-long!

Then having STTRS makes duplicates

* All functional programmers will like
(rule (map f (cons x xs))
(cons (f x) (map f xs))
* but the experts demand

(rule (map (lambda ((x Nat)) (f x)) (cons x xs))
(cons (f x) (map f xs))

Consequently, proposing STTRS leads to introducing duplicates!
so | even withdraw STTRS

Conclusion

* TRS: Aachen, Tokyo &

* ETRS: Aachen, Tokyo &

* RTRS: Aachen, Tokyo &

* SRS: Aachen, Leipzig, Tokyo &

* ITS: Aachen &

* ITRS: Aachen, London, Tokyo &

* HO: Gunma, Nijmegen, Saclay, Tokyo &=

 Q: What will the transformer's license be?

